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A two-dimensional (2D) harmonically trapped interacting Fermi gas is anticipated to exhibit a quantum
anomaly and possesses a breathing mode at frequencies different from a classical scale-invariant value
ωB ¼ 2ω⊥, where ω⊥ is the trapping frequency. The predicted maximum quantum anomaly (∼10%) has
not been confirmed in experiments. Here, we theoretically investigate the zero-temperature density
equation of state and the breathing mode frequency of an interacting Fermi superfluid at the dimensional
crossover from three to two dimensions. We find that the simple model of a 2D Fermi gas with a single
s-wave scattering length is not adequate to describe the experiments in the 2D limit, as commonly believed.
A more complete description of quasi-2D leads to a much weaker quantum anomaly, consistent with the
experimental observations. We clarify that the reduced quantum anomaly is due to the significant
confinement-induced effective range of interactions.
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In strongly interacting quantum many-body systems,
scale invariance can lead to nontrivial consequences. An
intriguing example is a three-dimensional (3D) unitary
Fermi gas with an infinitely large s-wave scattering length
a3D ¼ �∞ [1]. At zero energy, the free space eigenstates of
a unitary Fermi gas have a scale-invariant form, i.e., under a
rescaling of the spatial coordinates X⃗ → X⃗=λ, the scaled
wave functions satisfy ψðX⃗=λÞ ¼ λ−νψðX⃗Þ for any scaling
factor λ > 0. In the presence of an isotropic harmonic trap
of frequency ω0, a set of trap eigenstates can then be
constructed from zero-energy states in free space [1],
whose spectrum form a ladder with a step of 2ℏω0,
indicating the existence of a well-defined quasiparticle
(i.e., breathing mode) even in the strongly correlated
regime. This nontrivial exact mode can be understood
from a hidden SO(2,1) symmetry in the problem [2].
Classically, a two-dimensional (2D) atomic gas interact-

ing through a contact interaction is also scale invariant. The
hidden SO(2,1) symmetry under an isotropic trap (of
frequency ω⊥) would similarly lead to an exact breathing
mode with frequency ωB ¼ 2ω⊥, for both bosons and
fermions [2]. Quantum mechanically, however, the contact
interaction needs renormalization and the bare interaction
strength should be replaced by a regularized 2D s-wave
scattering length a2D [3]. As a result of this new length
scale, scale invariance of 2D quantum gases explicitly
breaks down [4] and the breathing mode frequency should
depend on a2D. In a 2D weakly interacting Bose gas, the
quantum anomaly is too weak to be observed [5–7]. For an
interacting 2D Fermi gas, the predicted quantum anomaly,

i.e., δωB=ð2ω⊥Þ, is significant and can reach approximately
10% in the strongly interacting crossover regime at zero
temperature [8–10], as shown in the inset of Fig. 1 as a
function of lnðkFa2DÞ, where kF is the Fermi wave vector at
the trap center. The 2D regime can be experimentally
realized by imposing a tight axial confinement with a large
trap aspect ratio λ ¼ ωz=ω⊥ [11–17], when the number of

FIG. 1. The column density n2D ¼ R
dznðzÞ of an ideal Fermi

gas, in units of a−2z ¼ Mωz=ℏ, at the dimensional crossover from
2D to 3D. (Inset) Predicted breathing mode frequencies of a 2D
interacting Fermi gas at T ¼ 0 using QMC EOS (dashed line) [8]
and GPF EOS (crosses) calculated in this Letter, and at T ¼
0.42TF using virial expansion (solid line) [18], compared with
the experimental data by Vogt et al. (stars, 0.42TF) [12], Holten
et al. (squares, 0.10 − 0.18TF) [16], and Peppler et al. (circles,
0.14 − 0.22TF) [17].
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atoms N is sufficiently small and only the ground single-
particle state in the axial direction is populated [11]. For an
ideal Fermi gas, this requires N < N2D ¼ λ2 or, equiva-
lently, a chemical potential μ < 1.5ℏωz (see Fig. 1) [11].
The prediction of the 10% quantum anomaly, unfortu-

nately, has never been confirmed experimentally. The first
experiment measured an anomaly of less than 1% at
temperature 0.42TF [12], where TF is the Fermi temper-
ature. While the discrepancy may be understood as a
temperature effect [18,19], two most recent measurements
[16,17] reported consistently a quantum anomaly of about
1.3% and 2.5%, respectively, at temperature as low as
∼0.1TF (see the inset of Fig. 1). The large discrepancy of
the measurements compared to the predicted anomaly is
rather surprising. The purpose of this Letter is to show that
the puzzle can be resolved by including all the trapped
single-particle states along the axial direction and hence
taking into account the quasi-2D nature of the experimental
setup, which leads to an unexpected large confinement-
induced effective range of interactions Rs in the 2D limit.
Theoretically, the understanding of a strongly interacting

Fermi gas at the dimensional crossover is a highly non-
trivial challenge, even at the mean-field level, due to both
infrared and ultraviolet divergences at low and high
energies, respectively [20,21]. In this Letter, we completely
solve the zero-temperature dimensional crossover problem.
In particular, we take into account strong Gaussian pair
fluctuations (GPFs) on top of the mean-field solutions and
therefore quantitatively determine the equation of state
(EOS) and the breathing mode of a strongly interacting
Fermi gas at the 2D-3D crossover (see Figs. 2 and 3). We
find surprisingly that, in sharp contrast to the common
belief, the Fermi cloud in the 2D limit cannot be adequately
described by the simple 2D model with a single scattering
length a2D. At the lowest experimental number of atoms
N=N2D ∼ 0.2, the dimensionless effective range of inter-
actions k2FRs ∼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=N2D

p ¼ Oð1Þ is comparable in mag-
nitude to the interaction parameter lnðkFa2DÞ in the
strongly interacting regime, leading to a much reduced
quantum anomaly as experimentally observed (see Fig. 4).
Theoretical framework.—The experimentally realized

quasi-2D Fermi gas of 6Li or 40K atoms near a broad
Feshbach resonance [12,16,17] can be described by [22]

H ¼
X
σ

ψ†
σðrÞH0ψσðrÞ þ Uψ†

↑ðrÞψ†
↓ðrÞψ↓ðrÞψ↑ðrÞ; ð1Þ

where ψσðrÞ is the annihilation operator for the spin state
σ ¼ ↑;↓ at position r ¼ ðρ; zÞ, H0¼−ℏ2∇2=ð2MÞþ
Mðω2⊥ρ2þω2

zz2Þ=2−μg is the single-particle Hamiltonian
with atomic mass M, μg is the chemical potential, and U
denotes the contact interaction strength and should be regu-
larized by a3D viaM=ð4πℏ2a3DÞ¼1=UþP

kM=ðℏ2k2Þ. As
the transverse trapping potentialMω2⊥ρ2=2 varies slowly in
real space, it is convenient to use the local density

FIG. 2. The density EOS of a unitary Fermi gas at the
dimensional crossover, calculated using the (a) mean-field and
(b) GPF theories. The anticipated behavior in the 3D limit is
shown by the blue dot-dashed lines, and the predictions of the 2D
models without and with the effective range of interactions are
plotted by the red dashed lines and green asterisks, respectively.
The inset in (a) highlights the EOS near the minimum chemical
potential μm ¼ ðℏωz − ϵBÞ=2 ≃ 0.378ℏωz. The inset in (b) com-
pares the 2D EOS with contact interactions, predicted by QMC
and the GPF theory.

FIG. 3. The breathing mode frequency of a unitary Fermi gas at
the dimensional crossover, as a function of N=N2D. The squares
and circles are the experimental data, measured by Holten et al.
[16] at az=a3D ≃ −0.35 and Peppler et al. [17] at az=a3D ¼ 0.
The GPF prediction of the two-channel 2D model with the
effective range of interactions is also shown by green asterisks
(see text for details).
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approximation (LDA) and define a local chemical potential
μðρÞ ¼ μg −Mω2⊥ρ2=2 [23]. In the following, we first treat
a locally transversely homogeneous Fermi gas with μðρÞ, in
which the single-particle wave function takes a plane wave
form ∝ expðik · ρÞ with wave vector k in the transverse
direction.
At the mean-field level, to account for the tight axial

confinement, we solve the inhomogeneous Bogoliubov–de
Gennes (BdG) equation [24,25]

�
H0ðkÞ ΔðzÞ
Δ�ðzÞ −H0ðkÞ

��
uηkðzÞ
vηkðzÞ

�
¼ Eηk

�
uηkðzÞ
vηkðzÞ

�
; ð2Þ

for the quasiparticle wave functions uηkðzÞ expðik · ρÞ and
vηkðzÞ expðik · ρÞ with energy Eηk > 0. Here, H0ðkÞ≡
−½ℏ2=ð2MÞ�d2=dz2 þ ℏ2k2=ð2MÞ − μðρÞ and we have
used η to explicitly index the energy spectrum for a given
wave vector k. The pairing field ΔðzÞ in the BdG equation
should be determined self-consistently, according to
ΔðzÞ ¼ U

P
ηkuηkðzÞv�ηkðzÞ. The resulting mean-field

(MF) column density is then given by nðMFÞ
2D ¼R

dznMFðzÞ¼
2
R
dz
P

ηkvηkðzÞv�ηkðzÞ [26].
In the strongly interacting regime, mean-field theory is

qualitatively reliable only. For a quantitative description,
we must go beyond the mean field and include strong pair
fluctuations by generalizing the GPF theory [27–32] to the
case of an inhomogeneous pairing field. This nontrivial
generalization is achieved by working out the vertex
function Γðq; iνlÞ [i.e., the Green function of Cooper pairs]
and the associated thermodynamic potential ΩGF¼
ðkBT=2Þ

P
Q≡ðq;iνlÞ ln½−Γ−1ðQÞ�, where νl ¼ 2πlkBT is

the bosonic Matsubara frequency and the subscript ‘GF’
stands for Gaussian fluctuations. In greater detail, we have
ΩGF ¼ kBT

P
QSðQÞeiνl0þ [29,32],

SðQÞ ¼ 1

2
ln

�
1 −

M2
12ðQÞ

M11ðQÞM11ð−QÞ
�
þ lnM11ðQÞ;

and the matrix elementsM11ðQÞ andM12ðQ) of the inverse
vertex function Γ−1ðQÞ can be written in terms of the
inhomogeneous BCS Green function of fermions [26].
Once we obtain ΩGF, we calculate the column density

nðGFÞ2D ¼ −∂ΩGF=∂μðρÞ.
Universal EOS at the dimensional crossover.—Using

the mean-field theory or GPF theory, we calculate the

column density n2D ¼ nðMFÞ
2D or n2D ¼ nðMFÞ

2D þ nðGFÞ2D at a
given local chemical potential μ≡ μðρÞ. Focusing on the
unitary limit where a3D → �∞, the zero-temperature
results are shown in Fig. 2 by black solid lines. This
unitary limit is of particular interest, as the length scale
a3D in the interatomic interaction disappears and the
system therefore should exhibit universal thermodynamics
[28,33–36]. In our case, we can express n2D as a function

of μ=ðℏωzÞ only and the predicted universal EOS in Fig. 2
could be experimentally determined by a single-shot
measurement of the column density at the lowest attainable
temperature [35].
In the 3D limit, where a number of singe-particle levels

in the axial direction are occupied, we may use the LDA to
handle the axial trap Mω2

zz2=2. This gives rise to [26]

n2Dðμ ≫ ℏωzÞ ¼
1

2π2ξ3=2

�
Mμ2

ℏ3ωz

�
; ð3Þ

where ξ is the so-called Bertsch parameter. The mean-field
and GPF theories predict ξBCS ≃ 0.59 and ξGPF ≃ 0.40,
respectively. The latter is very close to the latest exper-
imental value ξexp ¼ 0.376ð5Þ [36]. In the opposite 2D
limit, if we use a simple 2D model with contact interac-
tions [30,37], the mean-field theory provides a simple
EOS, n2Dðμ → μmÞ ¼ Mðμ − μmÞ=ðπℏ2Þ [30], where μm ¼
ðℏωz − ϵBÞ=2 is the minimum chemical potential allowed,
due to the existence of a two-body bound state with binding
energy ϵB ¼ ℏ2=ðMa22DÞ [26,38]. More accurate EOS in
the 2D limit could be obtained using numerically exact
quantum Monte Carlo (QMC) simulations [37,39] or the
approximate GPF theory [30], as illustrated in the inset of
Fig. 2(b). The relative difference between QMC and GPF
results is small (i.e., less than 15%), suggesting that
the GPF theory is quantitatively reliable also in the 2D
limit [40].
In Fig. 2, we show the anticipated equations of state in

the 3D and 2D limits with contact interactions using blue
dot-dashed lines and red dashed lines, respectively. Our
predicted EOS at the dimensional crossover (black curves),
from both mean-field and GPF theories, lies in between and
seems to smoothly connect the two limits. However, a close
examination of the 2D limit shows that the anticipated 2D
EOS with a single s-wave scattering length a2D cannot fully
account for the predicted quasi-2D results.
This is clearly seen from the mean-field EOS. In the inset

of Fig. 2(a), we highlight the density EOS near the 2D limit.

Although the predicted mean-field EOS nðMFÞ
2D shows the

expected linear dependence onMðμ − μmÞ=ℏ2, the slope of
the curve is significantly larger than 1=π from the simple
2D model of contact interactions. Therefore, it is evident
that the 2D model with a single parameter a2D fails to
adequately describe the EOS near the 2D limit. A hint for
this failure actually was already observed in the measure-
ments of the ground-state EOS of a quasi-2D Fermi gas
[13,14], where the definition of a2D should be modified to
reduce the discrepancy between the experimental data and
the pure 2D QMC prediction [26].
A new effective 2D model Hamiltonian therefore has to

be introduced, with additional terms accounting for the
enhanced slope in the quasi-2D EOS in the strongly
interacting regime. As a minimum setup, we consider
the inclusion of the effective range of interactions induced
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by the tight harmonic confinement. Indeed, by expanding
the expression of the quasi-2D scattering amplitude
fQ2DðkÞ first calculated by Petrov and Shlyapnikov [38]
to the order Oðk2Þ [26],

fQ2DðkÞ ¼ −
2π

ln ðka2DÞ þ Rsk2=2 − iπ=2þ � � � ; ð4Þ

we find an effective range of interactions, Rs ¼ −a2z ln 2.
This is a surprisingly large effective range, if we consider
the typical Fermi wave vector kF ∼ a−1z and scattering
length a2D ∼ az, and hence lnðkFa2DÞ ∼ Rsk2F [26]. More
precisely, by taking a peak density of an ideal trapped 2D
Fermi gas n2D ¼ ð ffiffiffiffi

N
p

=πÞðMω⊥=ℏÞ ¼ a−2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=N2D

p
=π ¼

k2F=ð2πÞ [11], we obtain a dimensionless effective range
k2FRs ¼ −ð2 ln 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=N2D

p ¼ Oð1Þ at the realistic exper-
imental number of atoms N ≳ 0.2N2D [16,17]. In the
previous experiments [13,14], a 2D scattering length a2 ≃
a2DeRsk20=2 with ℏ2k20 ¼ Mð2μþ ϵBÞ is defined to partly
include the effect of the effective range and to compare the
data with the 2D QMC result.
We use a two-channel 2D model to fully account for the

effective range of interactions (see Supplemental Material
[26] for details and also Refs. [41,42]. The resulting mean-
field and GPF predictions for the density EOS are shown in
Fig. 2 by green asterisks. In the 2D limit (i.e., μ → μm), we
find excellent agreement between the full quasi-2D sim-
ulations and the two-channel calculations, confirming the
importance of the effective range. As we shall see, it is also
responsible for the much reduced quantum anomaly in the
breathing mode frequency.
Breathing mode frequency.—In the strongly interacting

regime, the breathing mode can be well described by a
hydrodynamic theory [43], which has been successfully
applied to predict a large variety of collective oscillations in
both Fermi and Bose gases [44–46]. Here, it is convenient
to use the well-documented sum-rule approach [44], which
leads to

ℏ2ω2
B ¼ −2hρ2i

�
dhρ2i
dðω2⊥Þ

�−1
; ð5Þ

where hρ2i ¼ N−1
R
d2ρ½ρ2n2DðρÞ� is the squared radius

of the Fermi cloud and the chemical potential μg in the
local chemical potential μðρÞ should be adjusted to satisfy
the number equation N ¼ R

d2ρn2DðρÞ. We note that the
breathing mode frequency evaluated using the sum-rule
approach is exact when the density EOS takes a polytropic
form, i.e., μðn2DÞ ∝ ðn2DÞγ. In that case, the density profile
is easy to determine within LDA and one finds ωB=ω⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2γ

p
[44].

For a quasi-2D unitary Fermi gas in the 3D limit,
the density EOS is precisely described by a polytropic
form with γ ¼ 1=2, as given in Eq. (3), and we obtain

ωB ¼ ffiffiffi
3

p
ω⊥ [47,48]. On the contrary, in the 2D limit the

mean-field theory predicts a classical EOS μðn2DÞ − μm ¼
πℏ2n2D=M with γ ¼ 1, and hence we recover the scale-
invariant result ωB ¼ 2ω⊥. Quantum fluctuations upshift
the breathing mode frequency and lead to the quantum
anomaly [8,9].
At the dimensional crossover, we report in Fig. 3 the

breathing mode frequency of a unitary Fermi gas as a
function of N=N2D, calculated using both the quasi-2D
mean-field (red dashed line) and GPF theories (black solid
line), and compare them with the recent measurements at
Heidelberg [16] and at Swinburne [17]. We also show the
result obtained by using the QMC EOS of the simple 2D
model of contact interactions [39] (brown dot-dashed line)
and the GPF prediction of the two-channel 2D model
(green asterisks). The mode frequencies found by our
quasi-2D and two-channel 2D calculations, and measured
by experiments, all exhibit a strong dependence on N=N2D,
in sharp contrast to the pure 2D QMC prediction. In
particular, the anticipated 2D behavior, i.e., the ∼10%
upshift of the mode frequency, is already washed out at a
small number of atoms N=N2D ∼ 0.2, due to the significant
effective range of interactions. As the number of atoms
increase, the data from the Heidelberg group [16] follow
continuously our GPF prediction; however, the measure-
ment at Swinburne [17] agrees better with the mean-field
result. The source for such a difference requires a further
study.
To confirm conclusively that the observed reduced

quantum anomaly arises from the large effective range,
we compare in Fig. 4 the GPF prediction of the two-channel
2D model with the experimental data at N=N2D ∼ 0.2, as a
function of the interaction parameter lnðkFa2DÞ. On the
weak coupling side [i.e., lnðkFa2DÞ > 1], the result with

FIG. 4. The breathing mode frequency of a strongly interacting
2D Fermi gas at the lowest experimental number of atoms
N=N2D ∼ 0.2. The squares and circles are the experimental
data by Holten et al. (0.10 − 0.18TF) [16] and Peppler et al.
(0.14 − 0.22TF) [17], respectively. The lines show the predictions
of the two-channel 2D model at different effective range of
interactions, within the GPF theory.
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k2FRs ¼ −ð2 ln 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=N2D

p
≃ −0.62 (black line) agrees

with the data [16,17]. However, towards the strong cou-
pling regime, our prediction overestimates the shift. This is
easy to understand, since in that limit the peak density of
the Fermi cloud should be much larger than the peak
density of an ideal 2D Fermi gas that we have assumed.
To account for this effect, we may assume that the peak
density doubles for strong coupling [49] and correspond-
ingly take k2FRs ¼ −1.24 [26]. The resulting frequency
(orange dashed line) fits reasonably well with the data in
the tightly bound limit.
Conclusions.—We have developed a strong-coupling

theory for an interacting Fermi gas at the dimensional
crossover from 3D to 2D. We have clarified that, in the
2D limit under the current experimental conditions, a
confinement-induced effective range of interactions is very
significant and should be accounted for both theoretically
(i.e., via a two-channel 2D model) and experimentally. It
leads to a much reduced quantum anomaly, as observed in
the two most recent measurements [16,17]. The conse-
quence of such a large effective range in other quantum
phenomena, for example, the Berezinskii-Kosterlitz-
Thouless transition [32,50,51], remains to be understood.
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