
 

Optimal Segregation of Proteins: Phase Transitions and Symmetry Breaking

Jie Lin,1 Jiseon Min,1,2 and Ariel Amir1
1John A. Paulson, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

(Received 30 April 2018; published 13 February 2019)

Asymmetric segregation of key proteins at cell division—be it a beneficial or deleterious protein—is
ubiquitous in unicellular organisms and often considered as an evolved trait to increase fitness in a stressed
environment. Here, we provide a general framework to describe the evolutionary origin of this asymmetric
segregation. We compute the population fitness as a function of the protein segregation asymmetry a, and
show that the value of a which optimizes the population growth manifests a phase transition between
symmetric and asymmetric partitioning phases. Surprisingly, the nature of phase transition is different for
the case of beneficial proteins as opposed to deleterious proteins: a smooth (second order) transition from
purely symmetric to asymmetric segregation is found in the former, while a sharp transition occurs in the
latter. Our study elucidates the optimization problem faced by evolution in the context of protein
segregation, and motivates further investigation of asymmetric protein segregation in biological systems.
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Introduction.—In stressed environments, microbial cells
such as bacteria or yeast utilize various mechanisms in
order to survive. One important mechanism is the asym-
metric segregation of vital cytosolic components at cell
division: one of the two daughter cells will inherit more
favorable conditions (at the expense of the sister cell) [1–6].
Experiments on fission yeast have shown that this asym-
metric segregation emerges only in a stressed environment
[7]. These observations led to a conjecture that cells may
have evolved asymmetric segregation of damage to
increase the overall fitness of the population since one
of the daughter cells would be “rejuvenated” [3,8–10].
Cytosolic components that are advantageous to cell growth
may also be segregated asymmetrically [11,12]. For in-
stance, recent experiments elucidated the molecular mech-
anisms of asymmetric segregation of multidrug efflux
pumps in the bacterium Escherichia coli, which enable
direct expulsion of harmful chemicals from the cells [12].
The strong partitioning bias of efflux pumps for the old cell
poles generates growth rate differences among cells, and it
has been argued to be a strategy for bacteria to survive a
high concentration of antibiotics.
Several previous theoretical works focused on particular

models for how damage affects cellular growth, in which it
was shown that perfectly asymmetric segregation (one
daughter cell inherits all the key protein from the mother
cell) optimizes the population growth rate [3,9,13]. Here,
rather than focusing on a particular model, we will study a
rather broad class of models in which the instantaneous
(single-cell) growth rate is a function of the protein concen-
tration. We will find the optimal segregation strategy that
maximizes the population growth rate [14,15]. In thisway,we
obtain general insights into the problem and identify the

underlying optimization principles. Also, previous studies
often consider a coarse-grained effect of the damagedproteins
on the cell’s fitness through the generation time [3,13] or the
survival rate [9]. A more realistic model should start from the
instantaneous effects of the key protein cellular concentration
on the single-cell growth rate.
For the completely asymmetric segregation case, we

derive an analytical expression for the population growth
rate. For weak asymmetry, we can map the problem to the
Landau theory of phase transitions [16]. We find that the
optimal ratio exhibits a phase transition from a symmetric
phase to a perfectly asymmetric phase as the environmental
stress increases. While the transition is sharp for the case of
deleterious proteins, for the segregation of benefits the
transition is of second order. These theoretical predictions
are verified using numerical simulations. We conclude by
discussing the relation between our theory and experimental
observations.
Model.—We assume that the amount of the newly

produced key protein is proportional to the increment of
cell volume [17], with an accumulation rate S. Therefore,
the amount of protein at cell volume V is equal to

DðVÞ ¼ Db þ SðV − VbÞ; ð1Þ

and here Vb (Db) is the cell volume (amount of protein) at
cell birth. The protein accumulation rate S quantifies the
environmental stress: a larger S represents a more stressed
environment for damage segregation, e.g., a higher temper-
ature [7] and a less stressed environment for benefit
segregation. In the case of beneficial proteins, the param-
eter usually tuned in experiments is the concentration of
antibiotics [12]. A higher concentration of antibiotics
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requires a higher concentration of beneficial proteins, e.g.,
the efflux pump, to achieve the same growth rate as a lower
concentration of antibiotics. So increasing the environmen-
tal stress through antibiotics concentration is equivalent to
lowering the beneficial protein concentrations, which is set
by the protein accumulation rate. In the following, we
consider the protein accumulation rate as the control
parameter for both damage and benefit segregation cases,
and a larger (smaller) S represents a more stressed
environment for damage (benefit) segregation.
We assume that the cell divides its volume symmetrically

and deterministically (Vb ¼ 1, Vd ¼ 2) based on the fact
that the cell volume fluctuation is small [18–21]. The
amounts of protein that the two daughter cells inherit are

Db;1 ¼ Dd;m
1 − a
2

; Db;2 ¼ Dd;m
1þ a
2

; ð2Þ

where Dd;m is the amount of protein inside the mother cell
at division, and a is a continuous variable, ranging from 0
to 1 (Fig. 1). a ¼ 1 corresponds to the completely asym-
metric segregation and a ¼ 0 corresponds to the symmetric
segregation.
We assume that the cell volume grows exponentially at

the single cell level [18,22,23],

dV
dt

¼ λ½σ�V; ð3Þ

where λ½σ� is the instantaneous growth rate, depending on
the protein concentration σ ¼ D=V. The growth rate
function depends on the specific system, which can be
measured experimentally and in general exhibits an inflec-
tion point [2,3]. Here, we consider the growth rate as a
Hill-type function,

λ½σ� ¼ λ0 þ λ1σ
n

1þ σn
: ð4Þ

If λ0 > λ1, λ½σ� is a decreasing function, and thus the key
protein is deleterious. If λ0 < λ1, the protein is beneficial.
We note that an intrinsic concentration scale is implicitly
included in Eq. (4) and set as the unit of concentration. In
the following, we set the accumulation rate of the key
protein to be 0 < S < 1 since for all cases we study the
phase transition occurs within this range. This is consistent
with experimental observations (within the framework of
our model) [2,3,7,12].
In this Letter, we focus on the case n ¼ 2, but our main

conclusions are valid for any n > 1 [Supplemental Material
[24] SI (c)]. First, we briefly discuss the special case n ¼ 1,
where the growth rate function is purely convex (concave)
for the damage (benefit) case. In this case, we find that the
population growth rate is always maximized at a ¼ 1

(a ¼ 0) for the damage (benefit) case, independent of
the environmental stress [see proofs and numerical tests
in SI (b)]. This is consistent with the previous work on
related models [3,9]. In the following, we provide two
methods to find the population growth rate respectively for
small a and a ¼ 1, for a general growth rate function with
an inflection point. Interpolating between these two limits
will provide insights into the optimal degree of asymmetry.
Self-similarity method.—We consider an exponentially

growing population and imagine taking a snapshot of the
population at some time, from which we can find the total
number of cells (N) and the total cell volume of the
population (Vt). The population growth rate must be equal
to the total volume growth rate ð1=NÞðdN=dtÞ ¼
ð1=VtÞðdVt=dtÞ ¼ Λp because the cell volume is regu-
lated. We use the total cell volume to compute Λp because
it is more accurate and tractable to measure the growth rate
of the total cell volume than total cell number in numerical
simulations and analytical analysis.
When a ¼ 0, the concentration of the key protein

remains constant as the cell is growing from V ¼ 1 to
V ¼ 2, and is equal to the accumulation rate, S, of the key
protein. Therefore, all cells grow at the same rate λ½S�, and
the population growth rate is equal to the homogeneous
single-cell growth rate Λp ¼ λ½S�.
When a ¼ 1, one of the daughter cells does not get any

of the key protein from its mother, while the other one
inherits all the key protein. This leads to a self-similarity in
the population tree (see the illustration in Fig. S1). Consider
a tree starting from a single cell without any key protein.
The whole tree can then be decomposed into subtrees,
which are identical to the original one, except for a
temporal shift. The number of cells of the whole tree
grows as NðtÞ ∼ expðΛptÞ. The subtrees share the same Λp

as the whole tree, but with a temporal shift,
P

i
j¼0 τjðSÞ

(i ¼ 0; 1; 2;…), where τjðSÞ is the generation time of a cell
whose amount of key protein at cell birth is jS [SI (d)]. The
self-consistent equation of the population growth rate is

FIG. 1. A mother cell attributes the protein asymmetrically to
the daughters, with an asymmetry parameter a. The lineage
composed of cells inheriting more proteins than its sister cell will
reach a steady state with a constant number of proteins at cell
birth (red arrow). Similarly, the other lineage composed of cells
inheriting fewer proteins (green arrow) will reach a steady state.
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X∞
i¼0

exp

�
−Λp

Xi

j¼0

τj

�
¼ 1: ð5Þ

Equation (5) is satisfied by a unique value of population
growth rateΛp. In Figs. 2(a) and 2(b), we plot the numerical
values ofΛp when a¼1 based on Eq. (5). We note that both
for the damage and benefit cases, there exists a special S�
at which ΛpðS�; a ¼ 1Þ ¼ ΛpðS�; a ¼ 0Þ ¼ λ½S��. For the
damage (benefit) case, a ¼ 0 is favored to a¼1 if S < S�
(S > S�), and a ¼ 1 is favored to a ¼ 0 if S > S� (S < S�)
[Figs. 2(a) and 2(b)]. Yet, comparing the two exactly
solvable cases (a ¼ 0 and a ¼ 1) is not sufficient for
finding the optimal ac which maximizes the population
growth rate, or how ac changes with the control parameter S.
In the following section, we will introduce the Landau
approach and show that comparing S� and the inflection
point Sc of the growth rate function, determines the nature of
the transition from ac ¼ 0 to ac ¼ 1.
Landau approach.—We next consider the general case

with a ≠ 0. We decompose the growth of total cell volume
(Vt) into a sum over the contribution of single cells,
dVt=dt ¼

P
iλ½σi�Vi. Because when a ¼ 0 all cells have

the same protein concentration S, we choose to expand λ½σi�
around σi ¼ S for each cell,

dV
dt

¼
X
i

λ½σi�Vi

¼ Vλ½S� þ
X
i

dλ
dσ

����
S
ðσi − SÞVi

þ 1

2

d2λ
dσ2

����
S
ðσi − SÞ2Vi þ � � � ð6Þ

The first order term vanishes because the total amount
of protein of the entire population,

P
σiVi ¼ SVt in the

steady state. Defining the population’s fitness as f ¼
Λp − λ½S�, we find

fðS; aÞ ¼ 1

2

d2λ
dσ2

����
S
hðσi − SÞ2iv þ � � � ð7Þ

where hðσi − SÞniv ≡ ½Piðσi − SÞnVi�=
P

iVi. Note that
the fitness is directly related to the variability of protein
concentration arising from the deterministic asymmetric
partitioning, thus contributing to the population’s pheno-
typic heterogeneity. In the symmetric case (a ¼ 0),
the fitness f is zero by definition. Consider now the limit
0 < a ≪ 1. Because in the limit of small a, hðσi − SÞniv∼
an, the lowest order term of the fitness function has to scale
as a2 with a prefactor proportional to the second derivative
of the growth rate function at S,

f ¼ AS2
d2λ
dσ2

����
S
a2 þ C4ðSÞa4 þ C6ðSÞa6 þOða8Þ: ð8Þ

Here A is a universal positive number independent of the
growth rate function [SI (h)]. The odd order terms vanish
because of the symmetry fðaÞ ¼ fð−aÞ, and C4, C6 are
constants given a fixed S. We therefore see that the sign of
the second derivative of the growth rate function determines
whether the symmetric phase a ¼ 0 is a local maximum or
minimum of the fitness. The inflection point Sc of the
growth rate function, at which its second derivative
vanishes, will be central to the analysis.
For the damage case, we find S� ≈ Sc [S� ¼ 0.558,

Sc ¼ 0.577, Fig. 2(a)] taking λ0 ¼ 1, λ1 ¼ 0. We numeri-
cally confirm this is true for other Hill exponents n [SI (c)]
and prove S� ≈ Sc if λ1 ¼ 0 [SI (d)]. As one increases the
protein accumulation rate, the fitness at a ¼ 1 changes
from negative to positive when S exceeds S�, and the
curvature of the fitness at a ¼ 0 changes from negative to
positive when S exceeds Sc [Fig. 3(a)]. Therefore, if
S� < Sc, as one increases S, the fitness at a ¼ 1 changes
from negative to positive before the curvature at a ¼ 0
changes its sign. Assuming a smooth interpolation (without
additional local extrema) of the fitness function from a ¼ 0
to a ¼ 1, ac should undergo a first order transition from 0
to 1 as S increases [Fig. 3(a)]. In particular, the transition of
ac should be sharp as well if S� ≈ Sc, because the fitness at
a ¼ 1 and its curvature at a ¼ 0 flip their signs simulta-
neously. In SI (f), we also numerically confirm S� < Sc for
a finite λ1, so a sharp transition is generally true for a Hill
function which decreases monotonically. We remark that in
the case S� < Sc, the fitness can exhibit a minimum at a
finite value of a smaller than 1. This nonmonotonic
dependence can affect the accessibility of the fitness
maximum during the course of evolution [Fig. S5(f)]. In
other words, it is insufficient in this case for cells to develop
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FIG. 2. Population growth rate at a ¼ 0 and a ¼ 1 for the
damage (a) and benefit (b) case. Blue solid lines are theoretical
results based on numerical calculation of Eq. (5), and red solid
lines are λ½S�. Circles denote results from direct simulations of a
population with a ¼ 1. S� is the accumulation rate at which
ΛpðS�; 0Þ ¼ ΛpðS�; 1Þ. The growth rate at the single-cell level is
equal to λ½σ� ¼ ðλ0 þ λ1σ

2=1þ σ2Þ with λ0 ¼ 1, λ1 ¼ 0 for the
damage case and λ0 ¼ 0.2, λ1 ¼ 1.2 for the benefit case. Note
that we set λ0 > 0 for the benefit case in order to ensure a well-
defined population growth rate also for perfectly asymmetric
partitioning. The value of we setλ0 does not affect our conclusions
[see SI (f)]. S� ≈ 0.558 for the damage case and S� ¼ 0.378 for
the benefit case.
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a mild asymmetry of segregation that will evolve slowly
towards a larger value: the evolutionary advantage presents
itself only at a critical value of asymmetry, namely Δa.
For the benefit case, we find S� < Sc [S� ¼ 0.378,

Sc ¼ 0.577, Fig. 2(b)] with λ0 ¼ 0.2, λ1 ¼ 1.2. We numeri-
cally confirm that S� < Sc for other choices of Hill
exponent [SI (c)] and λ0 [SI (f)]. We also prove that S� <
Sc in the limit λ0 → 0 [SI (d)]. As one increases S from a
low value, the fitness at a ¼ 1 changes from positive to
negative when S exceeds S� and the curvature at a ¼ 0
changes from positive to negative when S exceeds Sc
[Fig. 3(b)]. Therefore, if S� < Sc, a small finite amust exist
that maximizes the fitness if S is just below Sc, and thus we
predict a smooth transition of the optimal ac [Fig. 3(b)].
Moreover, by finding the optimal ac that maximizes the
fitness using Eq. (8), we predict that the smooth transition
of the benefit case is in the universality of the Landau mean
field model, namely, ac ∼ jS − Scj1=2 [16]. Our conclusion

regarding the sharp transition of ac for the damage case and
the smooth transition for the benefit case is generally true
for different types of growth rate functions [SI (i)]. In SI (e),
we also explain how to intuitively understand why the
relations between S� and Sc are different in the damage and
benefit cases. The main idea is to consider a large Hill
exponent n and estimate the population growth rate as the
average growth rate over all cells in a population. As
quantified in the SI (e), although the growth rate depend-
ence on protein levels in the benefits and damage case has a
mirror symmetry, the implications for the population
structure are very different.
Numerical simulations.—We test our predictions by

simulating an exponentially growing population based
on Eqs. (1)–(4) and by setting ðn; λ0; λ1Þ ¼ ð2; 1; 0Þ for
the damage case and ðn; λ0; λ1Þ ¼ ð2; 0.2; 1.2Þ for the be-
nefit case [see simulation details in SI (a)]. We compute the
fitness as f ¼ Λp − λ½S� and plot it against a in Figs. 3(c)
and 3(d), which are consistent with Figs. 3(a) and 3(b). The
optimal ac that maximizes the fitness changes from ac ¼ 0
to ac ¼ 1 abruptly for the damage case and smoothly for
the benefit case, agreeing with our predictions [Figs. 4(a)
and 4(b)]. For the benefit case, the transition shows a
second order mean field behavior as we predict [see inset of
Fig. 4(b)]. Furthermore, we test our Landau approach by
fitting the fitness using f ¼ C2a2 þ C4a4 þ C6a6 [black
lines in Figs. 3(c) and 3(d)]. The measured ac is consistent
with the values of ac inferred from the Landau expansion.
We also plot the fit using the first two terms in the Landau
expansion which leads to deviations for large a values [SI
(g)]. In both damage and benefit cases, we obtain the
coefficient A ≈ 0.361 [SI (g)]. In SI (h), we find that the
value of A is independent of the growth rate function, and it
equals 1=½4 lnð2Þ� ≈ 0.361. This is related to the variance of
the key protein numbers at cell birth.
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FIG. 3. (a) For the damage case, if S� < Sc, as S increases from
0 to 1, the fitness at a ¼ 1 changes its sign from negative to
positive before the curvature of the fitness at a ¼ 0 does. This
leads to a first order transition of the optimal asymmetry
parameter ac from 0 to 1. The transition of ac should be sharp
as well if S� ≈ Sc, because the fitness at a ¼ 1 and its curvature at
a ¼ 0 flip their signs simultaneously. (b) For the benefit case,
because S� is far below Sc, as one increases S from a low value, a
small finite a must exist that maximizes the fitness if S is just
below Sc This leads to a smooth second order transition with a
mean field exponent, ac ∼ ðSc − SÞ1=2. In (a),(b), the optimal ac
that maximizes the fitness for different values of S is labeled by
the blue circle. (c),(d) Numerical simulations of the dependence
of the fitness on a for the damage (c) and benefit (d) cases.
Note that in (c), S� ≈ Sc, implying that the intermediate regime
where the fitness is nonmonotonic [as illustrated in part (a) of the
figure] is very narrow. For an example of this intermediate
scenario see Fig. S5(f). The black lines are the fits based on
f¼C2a2þC4a4þC6a6.
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FIG. 4. (a) The optimal ac changes sharply from 0 to 1 at S� for
the damage segregation. (b) For benefit segregation, the optimal
ac changes smoothly from 1 to 0, vanishing at the critical
accumulation rate Sc, the inflection point of the growth rate
function (marked as the red circle). The inset shows the mean
field scaling near the critical point where the black line has a
slope 1=2. Arrows indicate the direction of increasing environ-
mental stress.
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Discussion.—In this paper we studied the optimal segre-
gation strategy of a protein whose presence may be
beneficial or deleterious to cellular growth. We found that
the optimal degree of asymmetry which maximizes the
population growth rate shows a rich behavior and in
particular a phase transition taking a different form in the
case of damage or benefit segregation: a sharp transition
from perfectly symmetric to asymmetric segregation is
found in the former,while a smooth (second order) transition
from asymmetric to symmetric segregation occurs in the
latter. Our results are consistent with the segregation of
damaged proteins in certain organisms, such as fission yeast
in which a transition from symmetric segregation to asym-
metric phase is observed as the environmental stress
increases [7,25–28]. In these organisms, complex molecular
machinery, e.g., Hsp16, has evolved that actively fuse
damaged proteins to achieve completely asymmetrical
segregation between the two daughter cells (a ¼ 1). This
suggests that cells may have some control over the segre-
gation ratio by tuning the activity levels of the machinery
involved in the asymmetric segregation of damaged protein,
making the question we studied here relevant to under-
standing the optimization problem faced by evolution.
Similarly, the asymmetric segregation of the efflux pumps
in E. coli are controlled by the levels of another protein [12].
Consistent with our predictions, a continuous change of the
asymmetry degree a from 0.06 to 0.2 measured from the
relative difference between two daughter cells was observed
as the subinhibitory antibiotic concentration increases in the
experiments. In some organisms, it might be more accurate
to consider a as a function of the current state [3,4]. It would
be interesting to investigate the optimal segregation strategy
in such a case, where the segregation process is passively
controlled by the current protein concentration.
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