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A long cylindrical cavity through a soft solid forms a soft microfluidic channel, or models a vascular
capillary. We observe experimentally that, when such a channel bears a pressurized fluid, it first dilates
homogeneously, but then becomes unstable to a peristaltic elastic instability. We combine theory and
numerics to fully characterize the instability in a channel with initial radius a through an incompressible
bulk neo-Hookean solid with shear modulus μ. We show instability occurs supercritically with wavelength
12.278…a when the cavity pressure exceeds 2.052…μ. In finite solids, the wavelength for peristalsis
lengthens, with peristalsis ultimately being replaced by a long-wavelength bulging instability in thin-walled
cylinders. Peristalsis persists in Gent strain-stiffening materials, provided the material can sustain extension
by more than a factor of 6. Although naively a pressure driven failure mode of soft channels, the instability
also offers a route to fabricate periodically undulating channels, producing, e.g., waveguides with photonic
or phononic stop bands.
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A channel through a soft solid is the prototypical element
of biological plumbing [1], guiding fluid through the
vascular, lymphatic, digestive, reproductive, renal, and
respiratory systems. Soft channels also underpin the blos-
soming field of soft microfluidics [2], which exploits the
convenience of soft lithography for rapid prototyping [3,4],
the deformability of soft channels to actuate valves and
pumps [2,5,6], and the mechanical compatibility between
soft solids and soft tissues to build organs on chips and
medical implants [7,8]. Here we investigate how soft chan-
nels deform as their internal pressure increases. Thin-walled
elastic tubes famously undergo long-wavelength bulging,
bending, and ballooning instabilities [9–18] under inflation,
but a channel through a bulk solid arises in the opposite
(divergently thick-walled) limit. We combine theory,
numerics, and experiment (Fig. 1) to show that, while
modest fluid pressure causes simple dilation, the channel
undergoes a finite-wavelength elastic instability and adopts
a peristaltically undulating morphology when the pressure
becomes comparable to the solid’s shear modulus,
The hallmark of soft solids, includingelastomers, gels, and

manybiological tissues, is that they can sustain geometrically
large elastic strains (≳100%) without failing, exposing them
to the full complexity of large deformation geometry. This
generates a range of geometrically motivated elastic insta-
bilities, including buckling [19], creasing [20–25], and
wrinkling [26,27] under compression, fingering [28–32],

fringing [33,34], and beading [35–38] under tension, and
ballooning [9,13,16,18,39], aneurysm [39,40], and cavita-
tion [41–43] under inflation. These instabilities are important
failuremodes [44], but have also been exploited by evolution
to sculpt developing brains [45,46], guts [47,48], and other

FIG. 1. Schematic (top), numerics (middle, neo-Hookean), and
experiment (bottom, polyacrylamide) showing the shape evolu-
tion of a cylindrical channel through a soft solid under increasing
internal pressure. At modest pressure the channel dilates simply,
but at high pressures it undergoes an elastic instability and adopts
a peristaltic shape (right).
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organs [49–53], and by engineers to make shape-switching
devices [54–57].
We start by considering a cylindrical cavity, with initial

radius a, running through soft elastic material occupying
a < r < b, as shown in Fig. 1. If the channel is subject to
an internal pressure Pin, it will dilate, deforming the solid
and causing it to store elastic energy Eel. The observed
dilation will be determined by the minimum of the effective
energy,

Etot ¼ Eel − PinV; ð1Þ

where V is the dilated channel’s volume. If the deformed
solid has displacementu, its local shape change is described
by the deformation gradient tensorF ¼ I þ∇u (I being the
identity matrix and ∇ the gradient operator) and its elastic
energy density is of the formWðFÞ.Wemodel the solid as an
incompressible [DetðFÞ ¼ 1] neo-Hookean material [58]
with shear modulus μ, requiring WðFÞ ¼ 1

2
μTrðF · FTÞ−

P½DetðFÞ − 1�, where P is a Lagrange multiplier pressure
field enforcing incompressibility. This model is exact for
Gaussian polymer networks, and valid until deformations of
several hundred percent in lightly cross-linked gels or
elastomers [59], including our polyacrylamide gels [60].
It is also the simplest large-deformation elastic model, and
correspondingly offers the clearest exposition of geometri-
cally motivated instabilities.
Minimizing Etot with respect to variations in u and P

gives the expected equations of mechanical equilibrium,
and the constraint of incompressibility,

∇ · σ ¼ 0; DetðFÞ ¼ 1; ð2Þ

where σ ¼ ð∂W=∂FÞ ¼ ðμF − PF−TÞ is the large defor-
mation “first Piola-Kirchhoff” stress, a two-point tensor
relating forces in the deformed configuration to reference
configuration areas. These equations are augmented by the
natural inner and outer boundary conditions:

ðσ þ PfF−TÞ · r̂jr¼a;b ¼ 0; ð3Þ

where the boundary fluid pressure Pf ¼ Pin; 0 at r ¼ a, b,
respectively, and r̂ is the radial unit vector.
We first consider a simple radial dilation: u ¼ u0ðrÞr̂,

P ¼ μP0ðrÞ. Incompressibility requires

R≡ rþ u0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ r2
p

; ð4Þ

where the constant of integration c parametrizes the degree
of cavity dilation, with the inner radius rising by a factor of
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2=a2
p

. Mechanical equilibrium (∇ · σ ¼ 0) then
gives the form of the pressure field which, taking account of
the stress-free outer boundary, is

P0 ¼
1

2

�

r2

c2 þ r2
þ b2

c2 þ b2
þ ln

�

b2ðc2 þ r2Þ
r2ðc2 þ b2Þ

��

: ð5Þ

Finally, the inner boundary condition gives an implicit
solution for the channel dilation λ, which, introducing
g½x�≡ x−1 − logðxÞ, can be written as

Pin ¼
μ

2
fg½1þ ða=bÞ2ðλ2 − 1Þ� − g½λ2�g: ð6Þ

This predicted dilation is plotted for a range of values of
a=b in Fig. 2. Dilation rises monotonically with Pin, and
diverges at Pin ¼ μ logðb=aÞ. If b ¼ aþ t ≈ a (a pipe with
thin wall thickness t), this critical pressure reduces to
Pin ≈ μt=a, the signature scaling of elastic instabilities in
membrane tubes [9–18]. Conversely, in the b → ∞ limit,
Eq. (6) becomes

Pin ¼
μ

2
½1þ logðλ2Þ − λ−2�; ð7Þ

showing that the channel dilates, but only diverges at
infinite pressure. In contrast, the result for a spherical cavity
in a bulk solid, Pin ¼ ðμ=2Þ½5 − 4λ−1 − λ−4�, diverges at
Pin ¼ 5

2
μ, a celebrated result known as solid cavitation [41].

We investigated the stability of cylindrical cavities under
inflation experimentally by cross-linking a 1-mm-thick
rectangular slab of polyacrylamide gel around a 30 μm
wire [further details in Supplemental Material [61]]. The
wire was then removed (leaving a cylindrical channel), and
the gel was equilibrated in a phosphate buffered saline
solution (PBS). Finally, one end of the channel was plugged
with a glass bead, and the channel was inflated by pumping
additional PBS in through a glass capillary inserted at the
other end. We used a computer-controlled air pressure

FIG. 2. Dilation factor λ of a neo-Hookean cylindrical
channel as a function of its interior pressure Pin, for a range
of aspect ratios b=a. Predicted dilation (solid lines) diverges
at Pin ¼ μ logðb=aÞ, but a channel through a bulk solid (b → ∞)
never diverges. Experimental points are individual constant-
pressure measurements from three channels through polyacryla-
mide slabs, reproducing the bulk neo-Hookean theoretical
dilation.
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source to vary the pressure in the cavity, and monitored the
evolving shape of the channel with a CMOS camera sensor
fitted to a Leica stereomicroscope eyepiece. As seen in
Fig. 2, at modest pressures the channels simply dilate, in
good agreement with the prediction for a channel through a
bulk neo-Hookean. However, as seen in Fig. 1 and Video E1
in SM [61], beyond a critical pressure, the channel adopts a
new peristaltically undulating morphology. The transition is
reversible, and occurs at quasistatic rates of inflation,
suggesting a purely elastic mechanical instability.
To understand this transition, we examine the linear stabi-

lity of uniform dilation to small perturbations, u¼u0r̂þδu,
P ¼ μP0 þ δP, which, in turn, induce first order changes to
the deformation gradient (δF ¼ ∇δu) and the stress
[δσ ¼ μδF − δPF−T

0 − μP0δ(DetðFÞF−T)]. Expanding
Eqs. (2) and (3) to first order, we see the perturbation must
satisfy ∇·δσ¼0 (mechanical equilibrium), TrðF−1

0 ·δFÞ¼0

(incompressibility), and ½δσþPfδ(DetðFÞF−T)�·r̂jr¼a;b¼0

(boundary conditions). Substituting a peristaltic form,

δu ¼ frðrÞ cosðkzÞr̂þ fzðrÞ sinðkzÞẑ; ð8Þ

δP ¼ μP1ðrÞ cosðkzÞ; ð9Þ

and using Lagrange’s derivative notation, f0 ¼ ð∂f=∂rÞ, the
condition of incompressibility reduces (see SM [61]) to

RðRf0r þ krfzÞ þ rfr ¼ 0; ð10Þ

the equations of mechanical equilibrium become

kfrðr2−R2Þ2þrR3ðrf00z þf0z−k2rfzþkrP1Þ¼0; ð11Þ

rR4ðrf00r þ f0r − RP0
1Þ þ r2fr½r2 − R2ðk2R2 þ 2Þ�

þ kRfzðr2 − R2Þ2 ¼ 0; ð12Þ

and the boundary conditions (at both r ¼ a, b) become

Rf0z − krfr ¼ 0; ð13Þ

rR2f0r − r2fr − kr2Rfz − R3P1 ¼ 0: ð14Þ

Given R≡ rþ u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ðλ2 − 1Þ þ r2
p

, Eqs. (10)–(14)
form a fourth order generalized eigensystem for the critical
degree of dilation λ required for instability. Previous authors
have solved this system for modestly thick tubes [15]
(b − a ∼ a) which, like their thin-walled counterparts, first
become unstable via long-wavelength modes. Such modes
vanish beyond a critical wall thickness, leading these authors
to conclude that sufficiently thick pipes are stable. However,
inspired by our experimental observations, we use the
MATLAB bvp4c routine to search, numerically, for finite-
wavelength solutions (k ∼ 1=a) in a tubewhich is sufficiently
thick (b ¼ 1000a) to approximate a bulk solid. The first
unstable mode occurs at λ ¼ 4.824… (requiring Pin ¼
2.052…μ) and with finite wavelength 2π=k ¼ 12.278…a.
We plot the form of this solution in Fig. 3(a), showing the
fields take maximum values near the cavity, and only
penetrate a distance∼10a into the bulk, confirming the outer
boundary is effectively at infinity. The variation of threshold
pressurewithwavelength is plotted in Fig. 3(c). Although the
resulting threshold curve is very flat, it does have a minimum
(indicated with a star) corresponding to the first unsta-
ble mode.
In Figs. 3(b) and 3(c), we also compare these predictions

with bespoke [45,62] axisymmetric [38,63] finite element
calculations (b=a ≥ 60, see details in SM [61]) and thresh-
old measurements obtained in “unloading” experiments, in
which a channel is pressurized well beyond the point of
instability then quasistatically depressurized until peristal-
sis vanishes. In particular, we show in Fig. 3(b) that both
numerical and experimental cavities are indeed unstable
above Pin ¼ 2.05…μ over a range of gel moduli [64]. This
linearity in gel modulus is the hallmark of a purely elastic
instability. In finite elements, long cavities select the
expected 2π=k ¼ 12.278…a wavelength (see Fig. 2 in
theory SM [61]), but we can artificially fix the wavelength
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FIG. 3. Theoretical, numerical, and experimental treatment of the peristaltic instability in a channel through a bulk solid. (a) Peristaltic
fields for the first unstable mode from the stability analysis, plotted against the undeformed coordinate r. (b) Critical pressure for
instability as a function of shear modulus. (c) Critical pressure for instability at each wavelength. (d) Simulated amplitude as a function
of Pin, showing a supercritical transition without hysteresis.
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via periodic boundary conditions. In Fig. 3(c), we confirm
these alternative wavelengths become unstable at the
corresponding (higher) predicted pressures. In experiments,
we cannot prescribe a wavelength, but we find the
instability naturally occurs with a broad range of wave-
lengths (a signature of the very flat theoretical wavelength-
threshold curve) and, in each case, peristalsis vanishes
close to the predicted threshold pressure for that wave-
length. The experimental instability is often observed at
pressures slightly below the theoretical value, which we
attribute to the finite slab thickness.
Unlike stability analysis, our finite element calculations

can explore peristalsis beyond threshold. We conducted
a numerical loading or unloading cycle in a bulk solid
[Fig. 3(d) and Video N1 in SM [61]), which shows the
amplitude growing and shrinking continuously above
threshold without hysteresis; the instability is supercritical.
Repeating this exercise with different wavelengths reveals
that the energy-minimizing wavelength lengthens slightly
(see Fig. 3 in theory SM [61]) beyond threshold.
Overall, our analysis leads to a simple conclusion: the

driver for peristalsis is that, for a given inflated channel
volume, the peristaltic form requires less shape change and
saves elastic energy. An instructive comparison is to the
Plateau-Rayleigh instability [35,38,65], in which peristalsis
occurs because it reduces a cylinder’s surface area, and hence
reduces its surface energy. Here, peristalsis will also reduce
the channel’s inner surface area, relieving the base-state
stretch and saving elastic energy. The base-state stretch
Eq. (4) decays into the bulk over the length scale a, and
the energetically optimal peristaltic fields will penetrate this
dilated region,where they relieve strain, but not furtherwhere
they would add strain and cost energy. As is characteristic of
oscillating elastic fields, the peristaltic field’s penetration
distance is set by their wavelength, resulting in an optimal
wavelength proportional to a. Since this is a geometric
mechanism,we expect peristalsis to be generic in sufficiently
deformable elastic channels. In the final section of our study,
we investigate how robust peristalsis is to changes in
geometry and choice of elastic material.

First, we analyze peristalsis at finite b=a, by numerically
solving the stability equations [Eqs. (10)–(14)] to plot
threshold pressure vs wavelength in cavities with a range of
values of b=a (see Fig. 1 in theory SM [61]). The equations
only depend on Pin via the dilation (λ) it produces, and only
depend on b via the outer boundary condition where the
fields are in any event decayed. The instability thus has a
universal form in all channels with modestly large b=a,
which all become unstable at the bulk wavelength and
dilation. In Figs. 4(a) and 4(b), we show the full form of the
threshold dilation, and wavelength as a function of b=a. As
anticipated, these only deviate from the bulk form when
b=a≲ 10, with wavelength growing and dilation falling in
finite systems. However, the critical pressure [Fig. 4(c)]
drops from the bulk value rather earlier, as the pressure
required to produce this dilation is reduced in finite
systems, in accordance with Eq. (6). Peristalsis is replaced
by a long-wavelength axisymmetric bulging instability for
b=a≲ 7, the mode previously identified in thick-walled
tubes [15], which sets the ultimate limit of peristalsis in
finite systems.
Second, we analyze peristalsis beyond Hookean

materials. Most elastomers or gels are neo-Hookean at
modest strains, but have a finite extensibility, owing
to their finite length chains. The resulting stain
stiffening is captured by the Gent model [66], WðFÞ¼
−1

2
μJm logf1− ½TrðF:FTÞ−3�=Jmg−P½DetðFÞ−1�, which

reproduces the neo-Hookean energy when the strain
measure TrðF · FTÞ − 3 is small, but diverges when it
approaches Jm, a phenomenological parameter encoding
finite extensibility. Repeating the bulk linear-stability
analysis, we find the base state is identical, while the
stability equations become more complicated, but still
admit numerical solution. We display the critical
dilation, wavelength, and pressure as a function of Jm in
Figs. 4(d)–(f), showing that finite extensibility generates
only modest changes in the form of peristalsis,
but eliminates the instability entirely for Jm < 35, corre-
sponding to materials with limiting uniaxial extension
factor of λ≲ 6.

(a) (b) (c) (d) (e) (f)

FIG. 4. Effect of finite outer radius (a)–(c) and finite extensibility (d)–(f) on the critical dilation (a),(d), critical wavelength (b),(e), and
critical pressure (c),(f) of the peristaltic elastic instability. Straight dashed lines indicate the bulk neo-Hookean solution, while solid lines
indicated the full finite b=a solution (a)–(c) and Gent material solution (d)–(f). The curved dashed line in (c) is the pressure, at finite b=a,
required to produce the bulk critical dilation λ ¼ 4.82….

PHYSICAL REVIEW LETTERS 122, 068003 (2019)

068003-4



In summary, we have shown that a cylindrical channel
through a soft solid will spontaneously adopt a peristalti-
cally undulating shape when bearing a pressure comparable
to the solid’s shear modulus. The instability takes a simple
form in channels through bulk neo-Hookean solids, occur-
ring at a critical pressure (2.05…μ) proportional to the
channel shear modulus, and with a wavelength which is a
multiple of the cavity radius. Assuming a finite threshold
and wavelength, these scalings are an inevitable conse-
quence of the scale invariance of elasticity, which means a
is the only length scale in the problem, and μ is the only
stress scale. Several one-length-scale elastic fingering phe-
nomena produce analogous wavelengths [30–32,67–70],
and solid cavitation of bulk spherical cavities follows the
same stress scaling (Pc ¼ 2.5μ), though bulk peristalsis of
cylindrical cavities requires less pressure.
Peristalsis is also expected in finite solids, provided

b=a≳ 7, and strain-stiffening materials provided they are
sufficiently deformable. In some less-deformable elastic
media, the strain concentrations associated with peristalsis
will precipitate fracture and failure, suggesting peristalsis
places a fundamental limit on the pressure a channel can
bear, just as Euler-buckling limits loading of columns.
Conversely, in sufficiently deformable solids, peristalsis
offers a route to reversibly introduce periodicity into a
channel, potentially allowing a highly reflective photonic or
phononic stop band [71,72] to be switched within a
deformable waveguide.
We speculate that the peristaltic instability will also

manifest in biology, sculpting channels during both patho-
logical and developmental processes. Indeed, we first
observed peristalsis in hydrogel channels containing grow-
ing mouse embryonic stem cell tissues (Fig. 5). More
precisely, we injected a dense suspension of murine embry-
onic stem cells into a 35-μm-diameter (a ¼ 17.5 μm)
channel, which rapidly adhered into a monolithic tissue.
This tissue grew for 10 days within the channel, nourished
by cell culture media (see Refs. [73,74] and SM [61]). Such

embryonic stemcell tissue is a soft incompressible solidwith
a finite yield stress, and dilates the channel as it grows. The
tissue solidity arises because the cells are both individually
elastic (with moduli ∼100 Pa [75]) owing to their cytoske-
leton, and adhere to each other by expression of E-cadherin
[76]: we found disrupting either aspect (using Cytochalasin
D [77] or EDTA [78], respectively; see Fig. 3 in exper-
imental SM [61]) led to a tissue which could no longer
deform the hydrogel. With the undisrupted culture, peri-
stalsis appeared on day seven, when the central channel
dilation achieved the expected threshold of λ ≈ 4.8. As in
pressure-controlled experiments, peristalsis had uneven
wavelengths, varying between 7a and 12a, reflecting the
instability’s flat dispersion curve.
In biology, one commonly encounters thin-walled tubes

through soft tissues. Such tubes can be included in the
current framework by adding a thin tube of different elastic
material, with modulus μtube ¼ ημ, at the inner radius of the
channel. Under inflation this system must span from
conventional long-wavelength tube instabilities at high η
to finite-wavelength peristalsis at low η, and mapping this
transition is likely to be a rich and biologically relevant
subject for future investigations.
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