
 

Dynamics of a Self-Propelled Particle in a Harmonic Trap

Olivier Dauchot1 and Vincent Démery1,2
1Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France

2Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France

(Received 31 October 2018; published 13 February 2019)

The dynamics of an active walker in a harmonic potential is studied experimentally, numerically, and
theoretically. At odds with usual models of self-propelled particles, we identify two dynamical states for
which the particle condensates at a finite distance from the trap center. In the first state, also found in other
systems, the particle points radially outward from the trap, while diffusing along the azimuthal direction. In
the second state, the particle performs circular orbits around the center of the trap. We show that self-
alignment, taking the form of a torque coupling the particle orientation and velocity, is responsible for
the emergence of this second dynamical state. The transition between the two states is controlled by the
persistence of the particle orientation. At low inertia, the transition is continuous. For large inertia, the
transition is discontinuous and a coexistence regime with intermittent dynamics develops. The two states
survive in the overdamped limit or when the particle is confined by a curved hard wall.
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Understanding the effect of confinement on active
systems has become a central topic of research in active
matter. The motivation is twofold. On one hand, living
organisms and self-propelled particles rarely evolve in an
unbounded medium [1]; understanding their behavior in
confined environments is key to understanding realistic
systems. On the other hand, confining self-propelled
particles within an external trap is an excellent means of
analyzing the dynamics and the mechanical pressure
developed by such systems [2–8].
The mean square displacement of an isolated particle is

the same for the three main models of self-propelled
particles introduced so far, namely, active Brownian
particles (ABPs), run-and-tumble particles, and active
Ornstein-Uhlenbeck particles [9,10]. It is thus not a
discriminating observable. The steady state density profile
in a confining potential is far more informative, and has
recently received considerable attention [4,11]. Apart from
the notable exceptions of run-and-tumble particles in one
dimension and active Ornstein-Uhlenbeck particles in a
harmonic trap, the exact steady state is unknown. How-
ever, theoretical approximations, numerical simulations
[4,11,12], and experiments with colloids in an acoustic
trap [6] show that self-propelled particles confined in a 2D
axisymmetric trap accumulate at a finite distance of the trap
center when the trap is stiff. The reason is that the self-
propelled particle climbs the potential until it gets stuck
with its orientation pointing radially outward of the trap, at
a distance shorter than the persistence length of its isolated
dynamics.
This is however in sharp contrast with the simplest

experiment one can think of: observing a hexbug nano [13]
in a parabolic antenna. As can be seen from Fig. 1, and

from movie 1 provided in the Supplemental Material [14],
the hexbug orbits around the trap center. The goal of this
Letter is to examine the reasons for such a discrepancy.
Possible factors are inertia, which until recently [15] has
been overlooked in the active matter literature, and self-
alignment [16,17], which is responsible for the collective
motion of isotropic walkers [18]. We show that this self-
alignment is the key ingredient for observing rotating
orbits. Furthermore, we demonstrate that there is a tran-
sition from the “orbiting” state to the “climbing” state
depending on the persistence time of the particle orienta-
tion. Finally, the nature of the transition is controlled by
inertia. For large relaxation time of the velocity, the
transition is discontinuous and an intermittent dynamics
between the two states is observed. For small relaxation
time, the transition is continuous. Remarkably, the tran-
sition subsists in the overdamped limit.
The experimental setup is composed of one hexbug, a

toy robot [13], confined within a parabolic dish (Fig. 1).

FIG. 1. Hexbug nano [19] (b) running in a parabolic dish (a).
(c) Observed orbiting trajectory, the arrows represent the particle
orientation n and velocity v; see also movie 1 in Supplemental
Material [14].
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The parabola (Grundig QGP 2400) has an elliptic section
with a small axis of 580 mm, a long axis of 630 mm, and is
50 mm deep. The hexbug motion is tracked at 25 Hz using
a standard CCD camera. The hexbug has a length
L ¼ 45 mm, a width 15 mm, a height 15 mm, and a mass
m ¼ 7.5 g, including the battery. Its motion is obtained
from an internal vibration (frequency f0 ¼ 115 Hz and
acceleration Γ0 ≃ 1.5g) transmitted to 12 legs whose shape
ensures propulsion at a speed v0 ≃ 100 mm=s. The per-
sistence length of the motion exceeds 1 m. Another way to
set the hexbug in motion is to shake it vertically at the same
frequency f0, while keeping the engine off. The parabola is
thus attached to a vibrating shaker, which provides
a sinusoidal motion with an acceleration Γ ∈ ½1 − 3�g.
Note that the vibration amplitude not only ensures the
deterministic motion of the hexbug, but also contributes to
the stochastic part of it. In the following we choose L as the
unit length, while the time is expressed in seconds.
Our main experimental finding is that there is a transition

from an orbiting motion to a climbing motion when, the
vibration being on, the propulsive power of the hexbug
decreases as the battery gets low (see movie 2 in
Supplemental Material [14]). Figure 2 illustrates the two
regimes obtained in “steady state” conditions: (i) engine on
with a new battery and (ii) engine off with a low level of
vibration. In the orbiting regime, the hexbug rotates around
the bottom of the parabola, sometimes reverting its orbiting
direction. The radial position fluctuates significantly. The
velocity v and the orientation of the hexbug longitudinal
axis n are closely aligned (ðv=kvkÞ · n > 0.8). In the
climbing regime, the hexbug orientation points radially

away from the center of the parabola. The motion is
localized on a well-defined radial position. The azimuthal
velocity fluctuates around zero and the angular motion is
diffusive. The transition is essentially independent from the
vibration amplitude as long as Γ > 1.5g. The same tran-
sition is observed when the hexbug engine is switched off
and the vibration amplitude Γ is increased from 1g to 2g.
The precise location of the transition is hard to determine,
the reason being that there is a range of vibration for which
there is a coexistence of the two dynamics, leading to
intermittent motion.
To better examine this transition and identify the proper

control parameters, we adopt a description of the self-
propelled particle inspired from the one introduced to
describe granular walkers [16]: the velocity v and orienta-
tion n obey

m_v ¼ F0n − γv − κr; ð1Þ

τ _n ¼ ζðn × vÞ × nþ
ffiffiffiffiffiffi
2α

p
ξn⊥: ð2Þ

Equation (1) contains the mass of the hexbug m, the self-
propulsive force F0, the friction coefficient γ, and the
stiffness κ of the harmonic potential; in the absence of
confinement, the hexbug moves with a velocity v0 ¼ F0=γ.
The orientation dynamics [Eq. (2)] is overdamped and
contains the key ingredient, specific to the model, namely,
a self-aligning torque of the orientation n towards
the velocity v. This torque originates from the fact that
the dissipative force is not symmetric with respect to the
propulsion direction n when v is not aligned with n. This
ingredient is at the root of the emergence of collective
motion in a system of vibrated polar disks [16,20]. Finally,
the orientation dynamics contains a Gaussian noise ξðtÞ
with correlations hξðtÞξðt0Þi ¼ δðt − t0Þ; α=τ2 is the rota-
tional diffusion coefficient.
Rescaling the length by r0 ¼ F0=κ and the time by

t0 ¼ γ=κ, we arrive at the dimensionless equations of
motion,

τv _v ¼ n − v − r; ð3Þ

τn _n ¼ ðn × vÞ × nþ
ffiffiffiffiffiffiffi
2D

p
ξn⊥; ð4Þ

which contain three parameters, τv¼mκ=γ2, τn¼τκ=ðζF0Þ,
and D ¼ αγκ=ðζF0Þ2. Note that τv does not depend on F0,
while τn increases when F0 decreases.
We simulate Eqs. (3) and (4) with a small noise amplitude

D ¼ 0.01 and recover the behavior observed in the experi-
ments: for different values of τn and τv, the particle adopts
either a climbing [τv ¼ 0.2, τn ¼ 1.5, Figs. 3(a)–3(f)] or an
orbiting dynamics [τv ¼ 0.2, τn ¼ 0.5, Figs. 3(g)–3(l)]. In
both cases the particle is localized at a finite distance from
the center of the parabola, but the distribution is sharply
peaked at r ¼ 1 in the climbing state, while it is more

FIG. 2. Experimental dynamical regimes. (a)–(c) Climbing
motion. The hexbug is stuck, facing the slope, at a given height
in the potential and diffuses laterally; engine on, Γ ¼ 1.8g. (d)–(f)
Orbiting motion. The hexbug rotates around the center of the
parabola; engine off, Γ ¼ 1.0g. (a), (d) Trajectory. The color
codes the time; the orientation of the hexbug body is shown with
arrows at three different times. (b), (e): Azimuthal velocity as a
function of time. (c), (f). Probability distribution (PDF) of the
azimuthal velocity.
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broadly distributed in the orbiting state [Figs. 3(b) and 3(h)].
In the climbing state, the azimuthal velocity fluctuates
around 0, while, in the orbiting state, it fluctuates around
two opposite finite values, and the sign changes correspond-
ing to spontaneous inversions of the rotation direction
[Figs. 3(c), 3(d), 3(i), and 3(j)]. In both cases, the direction
of motion is directly correlated to the orientation of the
particle expressed in polar coordinates n ¼ cosðϕÞer þ
sinðϕÞeθ [Figs. 3(e) and 3(k)]. In the climbing state, n
fluctuates around the radial orientation er. In the orbiting
case, there is a finite angle between n and v: vkeθ and n is
always pointing outwards because of the finite relaxation
time τn. Finally, one can characterize the angular dynamics
with the mean square angular displacement (MSAD)
hΔθðtÞ2i with ΔθðtÞ ¼ θðtÞ − θð0Þ [Figs. 3(f) and 3(l)].
Not surprisingly, in both cases, theMSAD is ballistic at short
time and crosses over to a diffusive behavior at long time.
More interesting is the dependence on the angular noise: for
the climbing dynamics, the noise amplitude affects the
magnitude of the velocity and thus of the MSAD, leaving
the crossover time unchanged; for the orbiting dynamics,
increasing the noise enhances the rate of inversion of the
rotation direction and thus reduces the crossover time,
thereby reducing the long-time diffusion coefficient.
To rationalize these behaviors, we first study Eqs. (3) and

(4) without noise (D ¼ 0). In polar coordinates, they read
_r ¼ vr and

τv

�
_vr −

v2θ
r

�
¼ cosðϕÞ − vr − r; ð5Þ

τv

�
_vθ þ

vrvθ
r

�
¼ sinðϕÞ − vθ; ð6Þ

τn

�
_ϕþ vθ

r

�
¼ cosðϕÞvθ − sinðϕÞvr: ð7Þ

We look for stationary solutions, where vr ¼ 0, _vθ ¼ 0, and
_ϕ ¼ 0, leading to

τvv2θ
r

¼ r − cosðϕÞ; ð8Þ

vθ ¼ sinðϕÞ; ð9Þ
τnvθ
r

¼ cosðϕÞvθ: ð10Þ

A trivial solution is r ¼ 1, vθ ¼ 0, ϕ ¼ 0, which corre-
sponds to the climbing state. When vθ ≠ 0, Eq. (10)
simplifies and Eqs. (8)–(10) combine into a closed equation
for ϕ; introducing u ¼ cosðϕÞ2, it reads

u2 −
�
1þ τn

τv

�
uþ τ2n

τv
¼ 0: ð11Þ

This equation has a solution u ∈ ½0; 1�, which describes the
orbiting state, only if

τn ≤ τ�n ¼
(
1 if τv ≤ 1

τv
2
ffiffiffi
τv

p −1 if τv ≥ 1.
ð12Þ

Finally, linearizing Eqs. (5)–(7) around the stationary
solutions, we find that the climbing solution is linearly
stable for τn ≥ 1, and the orbiting solution is linearly stable
where it exists [14]. The resulting deterministic phase
diagram is shown in Fig. 4(a). The transition from climbing

FIG. 3. Numerical dynamical regimes. Simulations for τv ¼ 0.2, D ¼ 0.01, and (a)–(f) climbing dynamics τn ¼ 1.5, (g)–(l) orbiting
dynamics, τn ¼ 0.5. (a),(g) ðx; yÞ probability density function (PDF). (b), (h) PDF of the distance to the parabola center,
(c), (i) Azimuthal velocity as a function of time. (d), (j) PDF of the azimuthal velocity (thin black lines) and theoretical prediction
at weak noise (thick gray lines). (e), (k) PDF in the orientation-azimuthal velocity plane from simulations (top right) and weak noise
calculation (bottom left). (f), (l) mean squared angular displacement (MSAD) of the angular coordinate θ (thin solid line) and theoretical
prediction (thick gray line). Dotted and dashed lines: MSAD for D ¼ 0.002 and D ¼ 0.05, respectively.
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to orbiting is mainly controlled by τn. For τv < 1, the
transition is continuous. For τv > 1, it is discontinuous and
both solutions coexist in the region τv ≥ 1, 1 ≤ τn ≤ τ�n.
This is illustrated by the evolution of jvθj with τn, shown in
Figs. 4(b) and 4(d) for τv ¼ 0.2 and τv ¼ 5. Here the
steady solutions were obtained starting with two different
initial conditions: one close to the climbing solution,
r0 ¼ ð1; 0Þ, v0 ¼ ð1; 0Þ, and ϕ0 ¼ 10−4 (IC1); the other
close to the orbiting solution, r0 ¼ ð1; 0Þ, v0 ¼ ð0; 1Þ, and
ϕ0 ¼ 1.6 (IC2). The evolution of the distribution of
azimuthal velocity through the transition [Figs. 5(c)
and 5(e)] also reflects its continuous or discontinuous
character: for τv ¼ 0.2, the most probable value of vθ
decays continuously to zero as τn is increased, whereas it
jumps abruptly for τv ¼ 5.
For large noise, the probability density recovers a

Gaussian shape centered on the center of the parabola
[9,12]. At low noise, the fluctuations X ¼ ðδr; vr; δvθ; δϕÞ
around the stationary solutions follow _X ¼ −AX þ Ξ,
where A is a matrix, whose eigenvalues have a negative
real part in a stable state, and Ξ is the Gaussian noise vector
associated to ξ [14]. Hence, XðtÞ is Gaussian and can be
characterized completely, giving access to the distributions
of the position or the azimuthal velocity [Figs. 3(b), 3(d),
3(h), 3(j), 4(c) and 4(e)] and to the azimuthal velocity-
orientation correlations [Figs. 3(e) and 3(k)] [14]. Notably,
in the climbing state, the radius r and radial velocity vr
decouple from the azimuthal velocity vθ and orientation ϕ,
which are subject to the angular noise, explaining the very
small fluctuations of the radius [Figs. 3(a) and 3(b)]. In the

climbing state, we have access to the two regimes of the
MSAD through the temporal correlations of the azimuthal
velocity, hvθð0ÞvθðtÞi [Fig. 3(f)]. The correlations are
proportional to D and the crossover from the ballistic to
the diffusive regime does not depend on the noise ampli-
tude. Interestingly, for large enough τn and τv, the eigen-
values of the matrix A are complex, leading to oscillations
in the velocity correlation [Fig. 5(a)], which translate into
a nontrivial ballistic-diffusive crossover of the MSAD
[Fig. 5(c)]. We could check that such oscillations are
present in the experimental data [see Fig. 5(b)], showing
that inertia matters in the experiments. In the orbiting state,
the inversion of the rotation direction is not perturbative and
the rate of inversion cannot be computed using this
approach. We, however, capture the ballistic part of the
MSAD [Fig. 3(l)].
Altogether using a model of self-propelled particles,

previously used to describe active walkers, we have
recovered our main experimental observation, namely that
a hexbug running in a parabola exhibits two very different
dynamical regimes, an orbiting one and a climbing one.
Furthermore, we understand why the hexbug transits from
the orbiting to the climbing regime when the battery gets
low: when F0 decreases, τn increases, while τv does not
change, hence the observed transition. The fact that
intermittent dynamics between the two regimes were
observed experimentally is also consistent with the exist-
ence of the coexistence region for large enough inertia.
Finally, the model is able to predict nontrivial temporal
correlations, which are observed experimentally.
Let us conclude with a few remarks. (i) We tested

alternative models including self-alignment, but none of
them reproduces the observed phenomenology [14]; our
experiment puts strong constraints on the equations of
motion. (ii) The dynamics described here is in sharp
contrast with that of ABP, for which only climbing
dynamics exists. This is not because ABP dynamics is
overdamped: in the limit τv → 0, Eq. (3) becomes

FIG. 4. Noiseless steady states. (a) Phase diagram [the thick
gray lines indicate the values of the parameters ðτv; τnÞ used in the
right-hand panels]. (b), (d) Azimuthal velocity as a function of τn
for τv ¼ 0.2 (b) and τv ¼ 5 (d), where the symbols represent the
steady state obtained from two different initial conditions IC1

(blue circles) and IC2 (red squares) as defined in the text. (c e)
Distribution of azimuthal velocity through the orbiting (red) to
climbing (blue) transition for D ¼ 0.01 for τv ¼ 0.2 and τn ∈
f0.5; 0.75; 1; 1.25g (b) and τv ¼ 5 and τn ∈ f1.2; 1.35; 1.4; 1.6g
(d) from simulations (thin lines) and small noise calculation
(thick lines).

FIG. 5. Time-dependent correlations in the climbing state.
(a) Temporal correlations of the azimuthal velocity, and
(c) MSAD, for τn ¼ 2.5, D ¼ 0.01, and τv ¼ 0.2, 1, and 5
(dotted, dashed, and solid lines, respectively) in the simulations;
thick gray lines show the corresponding weak noise calculation.
(b) Experimental correlations of the azimuthal velocity in the
climbing state [Figs. 2(a)–2(c)].
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v ¼ n − r, which is the equation for the velocity of ABP,
and the resulting equation for the orientation is

τn _n ¼ −ðn × rÞ × nþ
ffiffiffiffiffiffiffi
2D

p
ξn⊥: ð13Þ

The climbing to orbiting transition still exists: the particle
rotates for τn < τ�n ¼ 1 and the azimuthal velocity is
jvθj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τn

p
. It is thus truly the self-aligning property

of n towards v that is responsible for the presence of the two
dynamical regimes. (iii) Replacing the harmonic trap with a
hard wall of radius Rw (in dimensionless units), an orbiting
solution still exists if τn < Rw, which slides along the wall
at a velocity vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðτn=RwÞ2

p
[14]. (iv) The orbiting

solution exists, however small the stiffness of the harmonic
potential κ provided that the rotational diffusion coefficient
D=τ2n ¼ αγ=ðτ2κÞ remains small enough.
Finally, let us stress that self-alignment is not limited to

macroscopic objects and takes place as soon as the drag
force induces a torque when the directions of velocity and
self-propulsion are misaligned. This happens in principle
whenever the design of the active particle includes an
embedded orientation n: the self-aligning torque arises
because the particle, which is by design left-right sym-
metric with respect to the direction of self-propulsion, is
then not always left-right symmetric with respect to the
direction of motion. This is easy to imagine for a non-
spherical colloid, but it can also arise from differential
coating. This is a matter of importance, since it is known
that such a coupling is prone to induce collective
motion [20]. The present study offers a way to assess
self-alignment in a number of active systems, not only
those using self-propelled particles similar to the present
hexbugs [8,21], but also those in the colloidal realm, using,
for instance, acoustic traps [6] or hard wall circular
confinement.
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