
 

Band Gap Closing in a Synthetic Hall Tube of Neutral Fermions

Jeong Ho Han, Jin Hyoun Kang, and Y. Shin*

Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
and Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea

(Received 2 September 2018; published 15 February 2019)

We report the experimental realization of a synthetic three-leg Hall tube with ultracold fermionic atoms
in a one-dimensional optical lattice. The legs of the synthetic tube are composed of three hyperfine spin
states of the atoms, and the cyclic interleg links are generated by two-photon Raman transitions between the
spin states, resulting in a uniform gauge flux ϕ penetrating each side plaquette of the tube. Using quench
dynamics, we investigate the band structure of the Hall tube system for a commensurate flux ϕ ¼ 2π=3.
Momentum-resolved analysis of the quench dynamics reveals a critical point of band gap closing as one of
the interleg coupling strengths is varied, which is consistent with a topological phase transition predicted
for the Hall tube system.
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Ultracold atoms in optical lattices have become a unique
platform for studying condensed matter physics in a clean
and controllable environment [1,2]. Over the past decade,
many experimental techniques have been demonstrated to
generate artificial gauge potentials for neutral atoms,
providing an interesting opportunity for exploring topo-
logically nontrivial states of matter [3]. The Hofstadter-
Harper (HH) Hamiltonian, which is the essential model for
quantum Hall physics, was realized in two-dimensional
(2D) optical lattice systems using laser-assisted tunneling
[4–7]. Recently, ladder systems with the HH Hamiltonian,
dubbed Hall ribbons, were demonstrated in the synthetic
dimension framework [8,9]; in this framework, the internal
degrees of freedom of atoms such as hyperfine spins
[10,11] and clock states [12] are exploited as a virtual
lattice dimension and the hopping along the dimension is
provided by laser-induced couplings between the internal
states. The framework was further extended with the
external degrees of freedom of atoms such as momentum
states [13–15] and lattice orbitals [16].
The key advantage of using synthetic lattice dimensions

is versatile boundary manipulation. Sharp edges can be
defined and individually detected with state-sensitive im-
aging, thus allowing for experimental investigation of
various phenomena such as chiral edge currents [10,11],
topological solitons at interfaces [13], and magnetic
reflection [14,15]. Furthermore, nontrivial lattice geom-
etries can be created in synthetic dimensions, which are
hardly achievable with conventional optical lattices but may
give rise to novel topological states [17,18]. A remarkable
example is a ladder geometry with a periodic boundary
condition (PBC), which can be realized by cyclically
connecting the synthetic lattice sites. It is under a PBC
that a Hall lattice system exhibits a true fractal structure of
the single-particle energy spectrum, called Hofstadter’s

butterfly [19]. Additionally, Laughlin’s pump, which is
an ideal manifestation of quantized Hall conductivity, has
been proposed for a torus geometry [20–22].
In this Letter, we report the experimental realization of a

synthetic Hall lattice system of a tube geometry with
ultracold fermionic atoms. In our scheme, the neutral
fermions are confined in a one-dimensional (1D) optical
lattice and three hyperfine spin states are employed as a
synthetic dimension to form a three-leg tube structure.
The cyclic links between the legs are created by spin-
momentum couplings via two-photon Raman transitions
between the spin states, and a uniform gauge flux ϕ ¼
2π=3 per side plaquette is generated, thus realizing an HH
Hamiltonian with a PBC [19]. Using quench dynamics, we
investigate the band structure of the synthetic Hall tube
system. When the system evolves from a symmetric tube to
an open ladder as one of the interleg coupling strengths is
decreased, we observe a critical point of band gap closing,
which is consistent with a topological phase transition
predicted for the Hall tube system. This work opens a new
avenue for studies of topological phases with ultracold
atoms in unconventional lattice geometries.
Our experiment starts with preparing a degenerate Fermi

gas of 173Yb atoms in the jF ¼ 5=2; mF ¼ −5=2i hyperfine
spin state of the 1S0 ground energy level [23]. The typical
atom number is N ≈ 1.0 × 104 and the temperature is
T=TF ≈ 0.3, where TF is the Fermi temperature of the
trapped sample. The atoms are adiabatically loaded in a
three-dimensional optical lattice potential with periodicity
dx;z ¼ λL=2 and dy ¼ λL=

ffiffiffi
3

p
, where λL ¼ 532 nm is the

laser wavelength. The final lattice depths are ðVx; Vy; VzÞ ¼
ð5; 20; 20ÞEL;α, where EL;α ¼ h2=ð8md2αÞ for α ∈ fx; y; zg,
h is the Planck constant, andm is the atomic mass. Because
tunneling along the y and z directions is highly suppressed by
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large lattice depths, our lattice system is effectively one
dimensional. The tunneling amplitude is tx ¼ 2π × 264 Hz,
and the characteristic filling factor is estimated to
be ≈0.75 with trapping frequencies of ðωx;ωy;ωzÞ ¼ 2π ×
ð58; 42; 132Þ Hz [2,24]. An external magnetic field of 153G
is applied along ẑ to lift the spin degeneracy of the 1S0
energy level.
The three lowest spin states, which we denote j1i≡

jmF ¼−5=2i, j2i≡ jmF ¼−3=2i, and j3i≡ jmF ¼−1=2i,
are employed for the three legs of the synthetic tube system.
To generate interleg couplings, three linearly polarized
Raman laser beams R1;2;3 are irradiated on the sample
[Fig. 1(a)], where the wave vectors of the laser beams are
given by k⃗r1 ¼ kRðcos θx̂þ sin θŷÞ and k⃗r2 ¼ k⃗r3 ¼ kRx̂,
respectively, and the polarization directions are horizontal
for R1;3 and vertical for R2 to the xy plane. The laser
frequencies of R1;2;3 are set to ω1 ¼ ω, ω2 ¼ ωþ δω, and
ω3 ¼ ω − 2δω, respectively, where ω is the laser frequency

blue-detuned by 1.97 GHz from the j1S0; F ¼ 5=2i →
j3P1; F0 ¼ 7=2i transition line. When δω is tuned to half
of the energy difference between j1i and j3i, the three spin
states fj1i; j2i; j3ig can be resonantly coupled to each other
in a cyclic manner by two-photon Raman transitions, as
described in Fig. 1(b). Thus, a three-leg synthetic tube is
constructed with the fermions in the 1D optical lattice
[Fig. 1(c)].
In the synthetic tube system, the Raman coupling

between the spin states jsi and js0i is described by interleg
tunneling with complex amplitude Ωss0eiϕj, where Ωss0 is
the Rabi frequency of the corresponding Raman transition
and j is the site index for the real lattice. The spatial phase
modulations of the tunneling amplitude originate from the

momentum transfer ℏΔk⃗ of the two-photon transition,

yielding ϕ ¼ ðΔk⃗ · x̂Þdx [7]. In our setup, Δk⃗ ¼ k⃗r2;r3 −
k⃗r1 ¼ kR½ð1 − cos θÞx̂ − sin θŷ� for all the cyclic interleg
couplings and ϕ ¼ 2πkRdxð1 − cos θÞ regardless of spin
state. When a fermion hops around any side plaquette of the
tube, it acquires a uniform net phase of ϕ, thus realizing
the HH Hamiltonian in the tube geometry. In this work, we
set θ ≈ 72° to have ϕ ¼ 2π=3, satisfying the PBC for the
synthetic dimension. Because the σ-σ transition (ΔmF ¼ 2)
for the j1i − j3i coupling is relatively weak, the intensity
ratio of R1;2;3 is adjusted to create a symmetric coupling
structure. We measure Ω12 ¼ Ω31 ≈ 12.3tx. Here, Ω23=Ω12

is fixed because the π-σ (ΔmF ¼ 1) transitions for the
j1i–j2i and j2i–j3i couplings are created by the same pair
of Raman beams, and the ratio is nearly unity within 2%.
In realizing the three-leg Hall tube, careful control of the

energy levels νs of the spin states is necessary to suppress
the optical transitions to the other spin states, j4i≡
jmF ¼ 1=2i and j5i≡ jmF ¼ 3=2i. In addition to the
magnetic Zeeman shift, νs is adjusted with a differential
ac Stark shift by radiating an additional laser light along ẑ
[25], which is σ− polarized and detuned by −70 MHz
with respect to the j1S0; F ¼ 5=2i → j3P1; F0 ¼ 7=2i
transition line. Under the final experimental condition,
the energy level differences between the spin states
are spectroscopically measured [26] and ðξ1; ξ2; ξ3; ξ4; ξ5Þ≈
ð0;−0.2; 0;−2; 1.7ÞΩ12, where ξs ¼ ðνs − ν1Þ − ðs − 1Þδω
and δω ¼ 2π × 30.4 kHz. ξs is the detuning of jsi from the
energy staircase formed by two-photon Raman processes
with a step unit of δω. The atom loss rate into j4i and j5i is
measured to be ≈0.01Ω12.
The Bloch Hamiltonian of the Hall tube system is

given by

Ĥq=ℏ ¼

0
B@

−2tx cos ðq − ϕÞ Ω12=2 Ω31=2
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FIG. 1. Realization of a synthetic Hall tube with neutral atoms.
(a) Schematic of the experimental setup. Fermionic 173Yb atoms
are confined in an optical lattice and illuminated by three Raman
laser beams R1;2;3. A magnetic field B and an additional laser
light (LB) are applied along ẑ to control the energy levels of the
spin states. (b) The three lowest spin states of 173Yb are coupled to
each other via two-photon Raman transitions by R1;2;3. (c) Syn-
thetic three-leg Hall tube with a uniform gauge flux ϕ on each
side plaquette. The three legs are formed by the three spin states
of the atoms in the 1D optical lattice (black lines) and the interleg
tunneling with complex amplitude (gray lines) is provided by the
cyclic Raman couplings between the spin states.
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where q is the quasimomentum of the lattice tube system
normalized by d−1x [26]. For a symmetric case with Ω12 ¼
Ω23 ¼ Ω31 and ξ2 ¼ 0, the Hamiltonian Ĥq for ϕ ¼ 2π=3
embeds a topologically nontrivial state, which is protected
by a generalized inversion symmetry [18,28]. In our
experiment, this symmetry is preserved with spatially
uniform Ωss0 and the topological state survives ξ2 ≠ 0,
featuring a nonzero Zak phase Z ¼ 1 of its lowest band
[29]. In Ĥq, time-reversal symmetry, particle-hole sym-
metry, and chiral symmetry are broken, which corresponds
to the symmetry class A (unitary) of the Altland-Zirnbauer
classification [30,31]. When the lowest band is completely
filled, the system represents a topological insulating state
analogous to the integer quantum Hall state [32].
To demonstrate the presence of a gauge flux on pla-

quettes, we investigate the quench dynamics of the syn-
thetic Hall system. Atoms are initially prepared in j1i, and
then the interleg couplings are suddenly activated by
turning on the Raman laser beams. After a variable hold
time, the spin composition is measured by imaging with
optical Stern-Gerlach spin separation [33], and separately,
the lattice momentum distribution nðkÞ is measured using
an adiabatic band-mapping technique [24,26]. Note that in
the band-mapping process, the quasimomentum state with
q is transformed into a superposition of free-space

momentum states of the three spin states in the first
Brillouin zone (BZ), where the momentum ks of spin state
jsi is related to q as ksdx ¼ ½qþ ðs − 2Þϕ� modulo 2π and
−kL < ks ≤ kL with kL ¼ π=dx. The momentum distribu-
tion nsðkÞ of the atoms in jsi is also measured by spin-
selective imaging [Fig. 2(b)] [23].
The measurement results of the time evolution of the

quenched synthetic Hall tube system are displayed in
Figs. 2(c) and 2(d). At the early time t < 100 μs, when
the atoms start transferring to j2i and j3i, the average
lattice momentum of the sample, hki ¼ R kL

−kL knðkÞdk=R kL
−kL nðkÞdk, shows no significant variations; however,
the difference between the momenta of the atoms trans-
ferred into j2i and j3i, CðtÞ ¼ hk2i − hk3i, where
hksi ¼

R kL
−kL knsðkÞdk=

R kL
−kL nsðkÞdk, increases noticeably.

This means that the atoms in the legs j2i and j3i move in
positive and negative directions of the real lattice, respec-
tively, which is understandable based on the classical
motion of a charged particle moving in the tube in the
presence of a magnetic field [Fig. 2(a)]. At later times, the
spin composition and CðtÞ show damped oscillations,
which are reasonably accounted for by a numerical sim-
ulation for Ĥq including phenomenological damping [26].
The asymmetry between j2i and j3i and the small oscil-
lations of hki result from nonzero ξ2.
The quench evolution of the Hall system is further

examined for open ladder geometries [Figs. 3(a) and 3(b)].
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FIG. 3. Quench dynamics of (a) two-leg and (b) three-leg
ladders with open boundaries for ϕ ¼ 2π=3. Time evolution of
(c),(d) the fractional spin populations and (e),(f) the average
lattice momentum hki. The solid lines display the numerical
simulation results for hki [26]. Each data point comprises five
measurements of the same experiment, and the error bar is their
standard deviation.
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FIG. 2. Quench dynamics of the three-leg Hall tube for
ϕ ¼ 2π=3. (a) Illustration of the atomic motion in the Hall tube.
Atoms are initially prepared in the spin-j1i leg and the interleg
couplings are suddenly activated. (b) Time evolution of the lattice
momentum distribution nðk; tÞ of the sample, n2ðk; tÞ of the
atoms in j2i, and n3ðk; tÞ of the atoms in j3i. Time evolution of
(c) the fractional spin populations, (d) the average lattice
momentum hki of the sample, and the difference CðtÞ ¼ hk2i −
hk3i between the momenta of the two legs j2i and j3i. Each data
point comprises five measurements of the same experiment, and
the error bar is their standard deviation. The solid and dashed
lines in (d) show the numerical simulation results for C and hki,
respectively [26].
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The structuremodification is achieved by deactivating two or
one of the interleg links; by shifting ω2 (ω3) by 2π × 400
ð−400Þ kHz, a two-(three-)leg ladder is formed. For large
detuning, the associated interleg couplings are effectively
turned off but the ac Stark shifts due to the Raman beams are
nearly unaffected [34,35]. The time evolutions of the spin
composition and hki are displayed in Figs. 3(c)–3(f). In
contrast to the Hall tube case, hki shows relatively large
oscillationsbecause theatomsare initiallypreparedat anedge
of the ladder. Interestingly, hki changes its sign during the
oscillations. The behavior is also observed in the numerical
simulations [Figs. 3(e) and 3(f)], andwe attribute it mainly to
the large gauge flux ϕ > π=2 causing atoms to reflect at the
BZ boundary. We note that the sign change of hki was not
observed in previous experiments for a smaller gauge flux
[10].The semiclassical trajectories of theopen ladder systems
reveal characteristic cyclotron motions [26], corroborating
the presence of a gauge flux on the side plaquettes of the
synthetic tube.
In Fig. 4(a), we present the phase diagram of the

Hall tube system for ϕ ¼ 2π=3 in the plane of Ω12

and Ω31. The topological phase with Z ¼ 1 exists in a
region of Ω− < Ω31 < Ωþ, where Ω� ¼ �3tx − ξ2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3tx ∓ ξ2Þ2 þ Ω2

12

p
. Our current system with Ω31 ¼

Ω12 ≈ 12.3tx is located in the topological regime and its
transition to a topologically trivial phase with Z ¼ 0 can be
driven by, e.g., decreasing Ω31 below the critical value of
Ω− ¼ 11.6tx [18]. In Fig. 4(b), the band dispersions of the
Hall tube system are displayed for various Ω31, showing
that the topological phase transition at Ω31 ¼ Ω− occurs
with closing the energy gap between the first and second
bands at quasimomentum qc ¼ �π [36].
The critical point of band gap closing is probed via

momentum-resolved analysis of the quench dynamics. As
the band gap closes, the dynamic evolution for q ¼ qc is
governed by a single energy scale that is determined by the
energy difference between the third band and the two
touching lowest bands. Therefore, the gap closing would be
characteristically reflected in the quench evolution of the
spin composition at qc. The momenta of the spin states j2i
and j3i corresponding to qc ¼ �π are k2c ¼ −kL and
k3c ¼ −kL=3, respectively, and we measure the quench
evolution of n2ðk2cÞ and n3ðk3cÞ for various Ω31 ≤ Ω12

[Fig. 4(c)]. When Ω31 is decreased by decreasing the
intensity of R3, the resulting reduction of the ac Stark
shift is compensated for by applying another off-resonant
laser light with the same polarization as R3. To obtain the
characteristic timescales of the spin composition oscilla-
tions, we determine the times τ2 and τ3 at which n2ðk2cÞ
and n3ðk3cÞ reach their first maxima, respectively, by
fitting the experimental data to an asymmetric parabolic
function [37].
Figure 4(d) shows the measurement results of τ2;3 as

functions ofΩ31. AtΩ31 ¼ Ω12, τ3 is smaller than τ2 and as
Ω31 decreases, it increases faster than τ2. The crossing of τ2
and τ3 occurs at Ω31 ≈ 10.4tx in the vicinity of the expected
critical point Ω−. The numerical simulation reproduces the
observed crossing behavior and yields τ2 ¼ τ3 atΩ31¼Ω−,
which validates our experimental approach using the time
scales of quench dynamics to probe band gap closing. It
might be speculated that the deviation of the measured
critical value from the predicted Ω− is possibly associated
with the renormalization by interaction effects [38]. For our
experimental parameters, the on-site interaction energy is
estimated to be U=ℏ ≈ 1.7tx. However, the deviation is
prominent only in τ2, which suggests that it might be due to
technical imperfections in our spin-selective imaging.
In conclusion, we realize a synthetic three-leg Hall tube

with ϕ ¼ 2π=3 and demonstrate the band gap closing at a
critical point of the topological phase transition of the
system. In our experimental setup, the gauge flux ϕ can be
controlled by the intersection angle θ between the Raman
beams, and we expect an immediate expansion of this work
to study fractal band structures with varying magnetic
fluxes from commensurate to incommensurate values.
Further studies may include interatomic interactions [39],
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explored in the experiment. (b) Band structures calculated for
various Ω31 with Ω12 ¼ Ω23 ≈ 12.3tx. A topological phase tran-
sition occurs together with band gap closing at qc ¼ �π.
(c) Quench evolution of n2ðk2cÞ and n3ðk3cÞ, where k2c and k3c
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to qc. Each data point is obtained by averaging five measurements
and the error bar is their standard deviation. The time τ2 (τ3) for the
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(d) τ2 and τ3 as functions of Ω31. The red and blue dashed lines
show the numerical results for τ2 and τ3, respectively. τ2 ¼ τ3
indicates the critical point of band gap closing.
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which are expected to show fractional charge behavior
[21], using the recently implemented orbital Feschbach
resonance [40,41].
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