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Particle fractionalization is believed to orchestrate the physics of many strongly correlated systems, yet
its direct experimental detection remains a challenge. We propose a simple measurement for an ultracold
matter system, in which correlations in initially decoupled 1D chains are imprinted via quantum quench
upon two-dimensional Dirac fermions. Luttinger liquid correlations launch relativistic “fractionalization
waves” along the chains, while coupling noninteracting chains induces perpendicular dispersion. These
could be easily distinguished in an ultracold gas experiment.

DOI: 10.1103/PhysRevLett.122.065302

Fractionalization is a profound, nonperturbative effect
of interparticle interactions in quantum matter, in which
the emergent degrees of freedom (d.o.f.) of a strongly
correlated system can be neither bosonic nor fermionic.
Fractionalization may reside at the heart of high-temperature
superconductivity and spin liquid physics [1,2]. Although an
essential characteristic of the fractional quantum Hall effect
(FQHE) that may enable topological quantum computation
[3], the direct detection of fractionalization in solid state
experiments has proven to be challenging [4].
In this Letter, we propose an ultracold fermion gas

experiment that could detect a clear signal for fractionali-
zation, using currently available experimental techniques.
In comparison to the much more daunting task of realizing
a FQHE state of interacting fermions in cold atoms [5], we
require only the preparation of 1D fermionic Luttinger
liquids (as recently measured in Refs. [6,7]), that can be
coupled together via a quantum quench [8] into a 2D pi-flux
lattice (as recently realized in Refs. [9–11]). We predict
discriminating signatures in density waves launched from an
initial Gaussian bump at the time of the quench. Any degree
of fractionalization produces waves with a characteristic
shape profile that propagate at the “speed of light” along the
1D chains. By contrast, a noninteracting prequench system
induces simple dispersion perpendicular to the chains.
Fractionalization can arise in a many-fermion system

when the fermion operator acquires an anomalous dimen-
sion, due to interactions [12,13]. In our proposed experi-
ment, a nonzero fermion anomalous dimension directly
determines density wave dynamics in a two-dimensional
(2D) fermion system. Here Luttinger liquid correlations
[14,15] in a system of initially decoupled 1D chains are
imprinted upon two-dimensional Dirac fermions. This is
accomplished via a quantum quench [16–25] that couples
together the chains into a 2D pi-flux lattice model (see
Fig. 1). To probe the dynamics, we calculate the density

waves emitted from an initial density bump [26–36].
We show that a nonzero initial-state-fermion anomalous
dimension launches relativistic “fractionalization waves”
along the chains, shown in Fig. 2. By contrast, the same
quench performed from initially noninteracting chains
induces dispersive propagation perpendicular to the chains,
see Fig. 3. The key result of this work is that the orthogonal

FIG. 1. Lattice setup for quench-induced fractionalization
waves. We consider fermions hopping on a pi-flux square lattice
(left), with horizontal bonds of strength J and sign-staggered
vertical bonds of strength bJ. The Hamiltonian for the non-
interacting model is given by Eq. (1). We quench from the
decoupled chain limit (b ¼ 0) to b > 0. We assume that inter-
actions can induce Luttinger liquid correlations (charge fraction-
alization) along the chains in the prequench state. The latter are
imprinted by the quench upon the pi-flux band fermions, leading
to the two-dimensional density wave dynamics depicted in Fig. 2
(fractionalized) and Fig. 3 (not fractionalized, initially noninter-
acting). The right panels in this figure show the pre- and
postquench energy bands. The prequench state of decoupled
chains is characterized by vertical nodal lines. The postquench
band gaps these out, except for a pair of Dirac points at
fkx; kyg ¼ f�π=2a; 0g. Energy bands are depicted over the
reduced Brillouin zone of the pi-flux lattice; a denotes the lattice
constant.
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motions of the fractionalized and noninteracting cases
should be easily distinguishable in an ultracold fermion
experiment.
Similar fractionalization waves dubbed “supersolitons”

were previously predicted in 1D quenches, including the
continuum sine-Gordon model [27] and the XXZ chain [28].

As in those studies, correlations shape the initial condition,
but we ignore interactions in the postquench evolution. In an
ultracold fermion gas it might be possible to turn off the
interactions at the time of the quench, but this is not a
requirement for us. Interactions are strongly irrelevant (in the
sense of the renormalization group) in the postquench band
structure. Our results should hold over a tunable transient
window 0 ≤ t < τcol, where 1=τcol is the particle-particle
scattering rate determined by the interactions and the post-
quench energy density.
Model.—We consider a pi-flux lattice model for fer-

mions in two dimensions,

H ¼ −J
X
m;n

c†m;n½cmþ1;n þ bð−1Þmþncm;nþ1� þ H:c:; ð1Þ

where cm;n annihilates a fermion at site fx; yg ¼ fm; nga
of the square lattice, a is the lattice spacing, and J > 0 is the
hopping energy. The dimensionless anisotropy parameter
b controls the strength of the staggered vertical hopping

FIG. 2. Quench from decoupled chains to the pi-flux lattice I:
horizontal, “relativistic” fractionalization waves. A positive
Gaussian density bump is superimposed by an external potential
on top of decoupled Luttinger liquids in the initial state. Via
instantaneous quench, the interchain coupling is turned on, while
the bump is released by turning off the potential. In this figure we
plot the time evolution of the post-quench density profile
ρðt; x; yÞ, assuming charge fractionalization of the initial Lut-
tinger liquid. Left (right) panels show the density in profile
(contour) plots; negative density means a depletion of the filled
Fermi sea. Total particle number is conserved [37]. The above
plots give time-slice profiles at t ¼ 0, 3, 6, 9, 12 (where t is in
units of vF=a). The degree of fractionalization is characterized by
the fermion anomalous dimension η ¼ 0.7 [Eq. (5)]. We also
incorporate a small but positive initial Fermi momentum,
kF ¼ 0.1=a. The other initial configuration parameters are fQ ¼
0.1;Δx ¼ 2a;Δy ¼ 3ag [Eq. (6)], and we time evolve with the
Hamiltonian parameters fvF ¼ b ¼ 1g. We choose a small bump
to conserve computational resources, but in an experiment a
larger bump would minimize lattice-scale detail neglected in
Eq. (5) [37].

FIG. 3. Quench from decoupled chains to the pi-flux lattice II:
dispersing vertical density waves from nonfractionalized (non-
interacting) chains. The absence of relativistic propagation in the
horizontal direction is due to Pauli blocking (see text and Fig. 4).
We plot the same time evolution of the post-quench density
profile as in Fig. 2, but for a vanishing prequench fermion
anomalous dimension η ¼ 0. All other parameters are identical to
Fig. 2. The plots show profiles at t ¼ 0, 3, 6, 9, 12.
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(see Fig. 1). We work with spinless fermions without loss
of generality. Spin-1/2 particles would be advantageous in
an ultracold fermion experiment, as decoupled Hubbard
chains in the prequench state give a particular way to realize
tunable charge fractionalization via the on-site Hubbard U
interaction (at densities away from half-filling) [15]. Apart
from this, physical spin will not impact the dynamics
discussed here.
The system is assumed to initially have b ¼ 0, so that

the lattice reduces to a set of uncoupled 1D chains. The
noninteracting band structure consists of vertical nodal
lines. Via instantaneous quantum quench, b is switched to
a positive, nonzero value, gapping out the nodal lines
except for a pair of Dirac points at fkx; kyg ¼ f�π=2a; 0g.
The pi flux ensures that the low-energy sectors of the pre-
and postquench band structures overlap.
We assume that the main effect of the global quench is

to excite particle-hole pairs along the nodal lines of
the prequench band structure. We therefore retain momen-
tum modes along narrow channels including these,
fjkx � π=2aj ≤ Λ; jkyj ≤ π=2ag. Here Λ ≪ π=a is a
momentum cutoff. Eq. (1) can then be approximated as

H ≃ vF

Z
Λ

−Λ

dkx
2π

Z π
2a

− π
2a

dky
2π

ψ†ðkÞĥðkÞψðkÞ

þ
Z

dxdyψ†ðx; yÞψðx; yÞΦðx; yÞ þHI; ð2aÞ

ĥðkÞ≡ σ̂3kx þ σ̂2mðkyÞ; ð2bÞ

where vF ¼ 2Ja is the maximum band velocity. The field
ψðkÞ → ψσ;τðkÞ is a four-component spinor. The Pauli
matrices σ̂1;2;3 act on the space of right (σ3 ¼ 1) and left
(σ3 ¼ −1) movers in the initial decoupled chains; this is not
equivalent to the space of right and left nodal lines (see
Ref. [37] for details). Equation (2a) is invariant under SU(2)
rotations on the index τ ∈ f1; 2g, which distinguishes
modes whose ky momenta fall in or outside the reduced
Brillouin zone (RBZ) depicted in Fig. 1. The parameter

mðkyÞ≡ ðb=aÞ sinðkyaÞ ð3Þ

in Eq. (2b) plays the role of a ky-dependent “mass,” when
the system is viewed as a collection of decoupled 1D
chains. Linearizing near ky ¼ 0 with b ¼ 1 would give
isotropic massless 2D Dirac fermions.
Relative to the homogeneous, noninteracting lattice model

in Eq. (1), we have incorporated two additional perturbations
on the second line of Eq. (2a). The first is an inhomogeneous
external potential Φðx; yÞ. We assume a localized potential
profile in the prequench state. Via the axial anomaly, this
induces an initial density inhomogeneity in the decoupled
chains of the form ρðx; yÞ ¼ −κΦðx; yÞ, where κ is the
compressibility. After the quench we will set Φ ¼ 0, and we

will monitor the evolution of ρðt; x; yÞ as a probe of the
dynamics.
Although Eq. (1) with b ¼ 0 describes decoupled chains

for spinless fermions, the field ψσ;τ consists of four, not two
components. The synthetic τ-spin d.o.f. is an artifact of
folding into the RBZ, necessary for describing the pi-flux
lattice. The termHI in Eq. (2a) encodes generic short-ranged
intrachain fermion-fermion interactions. It is well known that
the low-energy theory for a single-channel, spin-1=2 SU(2)-
symmetric quantum wire (described via a four-component
field ψ) admits four independent local, four-fermion inter-
action operators [15]. This includes spin current-current and
charge umklapp interactions, and these can gap out the spin
or charge d.o.f. In our case the coupling constants of these
operators should be tuned precisely to zero, because these
describe interactions between pairs of chains. The admis-
sible interactions [charge current-current and U(1) stress
tensor operators] set the charge velocity and Luttinger
parameter K in the prequench Luttinger liquid state of the
decoupled chains [37].
At time t ¼ 0, we quench on the interchain coupling

b > 0, and turn off the potential Φ and interactions in HI .
(In fact, we argue later that interactions can remain in place,
and will produce a negligible effect on the dynamics up to
time τcol, defined below). Then the time-evolving density
profile is determined by the convolution

ρðt; x; yÞ ¼
Z

dx1 dx2 dy1Tr½Ĝ†ðt; x1; y1ÞĜðt; x2; y1Þ�

× CΦðx − x1; x − x2; y − y1Þ; ð4Þ
where Ĝðt; x1; y1Þ is the causal Green’s function associated
to ĥ, and CΦðx1; x2; yÞ describes the static one-particle
fermion correlation function in the initial state at linear
order in the external potential Φ, given by [28,37]

CΦðx1; x2; yÞ ¼
cη
2

�
α2

ðx12Þ2 þ ζ2

�
η=2

R
x2
x1
dx κΦðx; yÞ
x12

; ð5Þ

where x12 ¼ x1 − x2. Here cη and α are positive constants,
while η is the fermion anomalous dimension. The latter is
η ¼ ð1=2pÞðK þ K−1 − 2Þ, where K is the Luttinger
parameter [14,15]. The exponent p ¼ 1 (p ¼ 2) for spin-
less (spin-1=2) fermions within each chain. K ¼ 1 gives
η ¼ 0 (noninteracting chains); otherwise η > 0. The param-
eter ζ is a short-distance regularization that can affect the
dynamics at long times [28]. Equation (5) is appropriate for
half-filling (kF ¼ 0). We compare the results from this
correlator with an exact lattice quench in the free fermion
case in Ref. [37].
Results.—We numerically integrate Eq. (4), using Eq. (5)

and assuming a Gaussian potential

κΦðx; yÞ ¼ QðπΔxΔyÞ−1e−ðx=ΔxÞ2−ðy=ΔyÞ2 : ð6Þ
We set the parameter α ¼ a ¼ 1 in Eq. (5) [37].
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As is clear from Figs. 2 and 3, the qualitative behavior
of the postquench density profile depends crucially on
whether or not the initial state is fractionalized. In the
initially fractionalized case [η > 0 in Eq. (5), Fig. 2], the
density develops collective excitations that propagate
horizontally along the chains at the maximum band
velocity vF. These fractionalization waves (“supersoli-
tons” [27,28]) retain their shape as they travel and exhibit
power-law growth of amplitude with time. Supersolitons
possess positive peaks and negative-density troughs; the
total particle number induced by the initial potential on
top of the filled Fermi sea is preserved at all times [37].
The results in Fig. 2 obtain from Eq. (5) with no short-
distance regularization, ζ ¼ 0. Nonzero ζ can arise due to
the effects of irrelevant operators [28], but we show in
Ref. [37] that qualitatively identical dynamics obtain in
this case except at long times, wherein the supersoliton
growth is curtailed [28]. By contrast, for the noninteracting
initial condition (η ¼ 0, Fig. 3), there is no supersoliton and
the initial density disperses vertically, perpendicular to the
chains.
The density dynamics in Figs. 2 and 3 should be contrasted

with one-particle quantum mechanics. The same Green’s
function Ĝðt; x; yÞ that enters into Eq. (4) determines the
evolution of a Gaussian single-particle wave packet. Since
ĥ ≃ −iσ̂3∂x − iσ̂2∂y, the result is a circular wave front
propagating at the “speed of light” [37]. Instead, the
fractionalized quench gives x-directed supersolitons, while
the noninteracting quench gives y-dispersing propagation.
The difference between the latter and one-particle quantum
mechanics is due to Pauli blocking [28]. Single-particle
quantum mechanics also shows that lattice-scale detail
neglected in the Green’s function has negligible effect on
the dynamics over the timescales of interest [37].
Further insight into the quench dynamics obtains from

the Wigner distribution due to the initial Gaussian bump,

δnþðvx; vy;Rx; RyÞ ∝ J ðvÞ
Z

d2qeiq·R

× ha†½kðvÞ − q=2�a½kðvÞ þ q=2�iΦ;
ð7Þ

where aðkÞ annihilates a pi-flux conduction band fermion
with momentum k, and J ðvÞ≡ j∂kμ=∂vνj is the Jacobian
relating the postquench band velocities vx;y ≡
∂kx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þm2ðkyÞ

q
to the momenta kx;y. The expectation

value in Eq. (7) is computed at time t ¼ 0, i.e., using
Eq. (5). The Wigner distribution is plotted for variable η in
Fig. 4. We observe a pronounced difference between the
fractionalized and nonfractionalized cases. The distribution
for the case with η > 0 has a diverging density of
x-direction velocities approaching the maximum band
velocity. On the other hand, the noninteracting η ¼ 0 case
has a velocity distribution strongly localized to x velocities

close to zero. The absence of large x velocities in the latter
is due to Pauli blocking: for ky ¼ 0, the momentum jqxj
must exceed 2jkxj in order for the pair of operators in
Eq. (7) to create a particle-hole pair in the Fermi sea. Large
jqxj > 1=Δx (and therefore large vx) is suppressed by the
initial density profile [Eq. (6)]. Fractionalization (η > 0)
circumnavigates the Pauli blocking restriction on large x
velocities [37]. This is because the fermions responsible for
the postquench propagation are not locally related to the
effectively noninteracting, but fractionally charged con-
stituents that define the prequench vacuum state [28]. We
also note that the kinematic condition

v2x þ v2y=b2 ≤ 1; ð8Þ
implies that the accumulation of the Wigner distribution at
vx ¼ 1 requires vy ¼ 0, and thus explains why the super-
soliton is stable to dispersion in the y direction.

FIG. 4. Wigner velocity distribution δnþðvx; vy;Rx; RyÞ im-
printed on the pi-flux band fermions at the time of the quench,
induced by charge fractionalization and a Gaussian density bump
in the initial state of decoupled chains. The distribution is
evaluated at the center of the bump Rx ¼ Ry ¼ 0. Unlike
continuum 2D massless Dirac fermions, the allowed velocities
span a disk due to the lattice regularization in the ky-direction,
Eqs. (2a) and (8). The parameter η is the fermion anomalous
dimension [Eq. (5)]. For η > 0, there is a divergence of the
x-velocities near the speed of light (band velocity vF ¼ 1). At
η ¼ 0 (noninteracting initial condition), large x velocities are
suppressed by Pauli blocking (see text).
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Window for collisionless dynamics.—The correlator in
Eq. (5) with η > 0 arises due to generic short-ranged
interactions in the initially decoupled chains. The post-
quench dynamics captured by Eq. (4) ignore interactions in
the subsequent time evolution.
Beyond the density bump dynamics explored here, the

main bulk effect of the global quench is to generate a finite
density of particle-hole pairs, corresponding to a nonzero
average energy per particle. If the interactions are not
turned off at the time of the quench, then the system is
expected to eventually thermalize to a temperature corre-
sponding to the injected energy density [20].
We can estimate the collision rate 1=τcol responsible for

thermalization in the postquench evolution. For the low-
energy pi-flux Dirac fermions, a short-ranged lattice
interaction carries units of energy × length2 ∼Ufa2, where
Uf is the lattice interaction energy. The subscript “f”
denotes the interaction strength after the quench, which can
differ from the prequench strength ≡Ui. The postquench
Fermi golden rule collision rate should be of order
1=τcol ∼ ½ðUfa2Þ=ðbv2FÞ�2ε3, where ε is the characteristic
energy per particle. The two factors of b−1v−2F arise from
the density of states. For kF ¼ 0 (half filling), a crude
estimate is ε ∼ bvF=a ∼ bJ, so that

bJτcol ∼ ðJ=UfÞ2: ð9Þ
In the postquench evolution, time is measured in units of
1=bJ (b ¼ 1 in Figs. 2 and 3). Equation (9) implies that the
window of time over which collisionless dynamics can
occur is set by the dimensionless ratio of Uf=J. At times
t ≫ τcol, we expect the ultimate density wave evolution to
be governed by classical hydrodynamics [19].
Small Uf=J will induce a large collisionless window. By

contrast, the anomalous dimension η responsible for the
supersoliton dynamics in Fig. 2 is a function of the ratio
Ui=J. Taking the latter to be too small will result in η ≪ 1.
For spin-1/2 Hubbard chains with repulsive interactions
and Ui=J ∼ 1, it is possible to get K close to 1=2 (η ¼ 1=8)
for particle densities very close but not equal to half-filling
[15,38]. In Ref. [37], we show, for example, that η ¼ 0.2
still exhibits the supersoliton over the same time interval
as Fig. 2.
A balance should be struck between minimizing colli-

sions over a sufficiently long time window after the quench,
and maximizing the correlations in the initial state. At the
same time, in an optical lattice setup for ultracold fermions
Uf < Ui, since lowering the tunneling barriers in the y
direction to couple the 1D chains together will necessarily
“unsqueeze” the atoms in that direction, decreasing the on-
site interaction energy. A further reduction of Uf and
(enhancement of τcol) is possible if at the time of the quench
the confinement is simultaneously reduced in the z direc-
tion, perpendicular to the plane of the 2D lattice.

We thank Kaden Hazzard and Randy Hulet for helpful
discussions. We thank Stephen Bradshaw, Anthony
Sciola, Jia-Liang Shen, and Shah Alam for helpful
discussions on high-performance computing. This work
was supported in part by the Data Analysis and
Visualization Cyberinfrastructure funded by NSF under
Grant No. OCI-0959097 and Rice University. M. S. F.
acknowledges support from the U.S. Army Research
Office (Grant No. W911NF-17-1-0259). This research
was also supported by NSF CAREER Grant No. DMR-
1552327, and by the Welch Foundation Grant No. C-1809.
M. S. F. thanks the Aspen Center for Physics, which is
supported by the NSF Grant No. PHY-1607611, for its
hospitality while part of this work was performed.

[1] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott
insulator: Physics of high-temperature superconductivity,
Rev. Mod. Phys. 78, 17 (2006).

[2] S. Sachdev, Exotic phases and quantum phase transitions:
Model systems and experiments, arXiv:0901.4103.

[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D.
Sarma, Non-Abelian anyons and topological quantum
computation, Rev. Mod. Phys. 80, 1083 (2008).

[4] R. L. Willett, L. N. Pfeiffer, and K.W. West, Measurement
of filling factor 5=2 quasiparticle interference with obser-
vation of charge e=4 and e=2 period oscillations, Proc. Natl.
Acad. Sci. U.S.A. 106, 8853 (2009); D. T. McClure, W.
Chang, C. M. Marcus, L. N. Pfeiffer, and K.W.West, Fabry-
Perot Interferometry with Fractional Charges, Phys. Rev.
Lett. 108, 256804 (2012).

[5] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological
bands for ultracold atoms, arXiv:1803.00249.

[6] G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F.
Schäfer, H. Hu, X.-J. Liu, J. Catani, C. Sias, M. Inguscio,
and L. Fallani, A one-dimensional liquid of fermions with
tunable spin, Nat. Phys. 10, 198 (2014).

[7] T. L. Yang, P. Grišins, Y. T. Chang, Z. H. Zhao, C. Y. Shih,
T. Giamarchi, and R. G. Hulet, Measurement of the
Dynamical Structure Factor of a 1D Interacting Fermi
Gas, Phys. Rev. Lett. 121, 103001 (2018).

[8] D. Greif, G. Jotzu, M. Messer, R. Desbuquois, and T.
Esslinger, Formation and Dynamics of Antiferromagnetic
Correlations in Tunable Optical Lattices, Phys. Rev. Lett.
115, 260401 (2015).

[9] M. Aidelsberger, M. Atala, M. Lohse, J. T. Berreiro, B.
Paredes, and I. Bloch, Realization of the Hofstadter Ham-
iltonian with Ultracold Atoms in Optical Lattices, Phys.
Rev. Lett. 111, 185301 (2013).

[10] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Realizing the Harper Hamiltonian with
Laser-Assisted Tunneling in Optical Lattices, Phys. Rev.
Lett. 111, 185302 (2013).

[11] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle,
Observation of Bose-Einstein condensation in a strong
synthetic magnetic field, Nat. Phys. 11, 859 (2015).

[12] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, England, 1996).

PHYSICAL REVIEW LETTERS 122, 065302 (2019)

065302-5

https://doi.org/10.1103/RevModPhys.78.17
http://arXiv.org/abs/0901.4103
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1073/pnas.0812599106
https://doi.org/10.1073/pnas.0812599106
https://doi.org/10.1103/PhysRevLett.108.256804
https://doi.org/10.1103/PhysRevLett.108.256804
http://arXiv.org/abs/1803.00249
https://doi.org/10.1038/nphys2878
https://doi.org/10.1103/PhysRevLett.121.103001
https://doi.org/10.1103/PhysRevLett.115.260401
https://doi.org/10.1103/PhysRevLett.115.260401
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nphys3421


[13] S. Sachdev,QuantumPhase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, England, 2007).

[14] A. O. Gogolin, A. A. Nersesyan, and A.M. Tsvelik, Boso-
nization and Strongly Correlated Systems (Cambridge
University Press, Cambridge, England, 1998).

[15] T. Giamarchi, Quantum Physics in One Dimension
(Clarendon Press, Oxford, England, 2003).

[16] M. A. Cazalilla, Effect of Suddenly Turning on Interactions
in the Luttinger Model, Phys. Rev. Lett. 97, 156403 (2006).

[17] M. Moeckel and S. Kehrein, Interaction Quench in the
Hubbard Model, Phys. Rev. Lett. 100, 175702 (2008).

[18] M. Eckstein, M. Kollar, and P. Werner, Thermalization after
an Interaction Quench in the Hubbard Model, Phys. Rev.
Lett. 103, 056403 (2009).

[19] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S.
Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and
A. Rosch, Fermionic transport and out-of-equilibrium dy-
namics in a homogeneous Hubbard model with ultracold
atoms, Nat. Phys. 8, 213 (2012).

[20] M. Tavora and A. Mitra, Quench dynamics of one-dimen-
sional bosons in a commensurate periodic potential: A
quantum kinetic equation approach, Phys. Rev. B 88,
115144 (2013).

[21] S. Ngo Dinh, D. A. Bagrets, and A. D. Mirlin, Interaction
quench in nonequilibrium Luttinger liquids, Phys. Rev. B
88, 245405 (2013).

[22] A. J. A. James and R. M. Konik, Quantum quenches in two
spatial dimensions using chain array matrix product states,
Phys. Rev. B 92, 161111(R) (2015).

[23] I. G. White, R. G. Hulet, and K. R. A. Hazzard, Correlations
generated from high-temperature states: Nonequilibrium
dynamics in the Fermi-Hubbard model, arXiv:1612.05671.

[24] X. Yin and L. Radzihovsky, Quench dynamics of the spin-
imbalanced Fermi-Hubbard model in one dimension, Phys.
Rev. A 94, 063637 (2016).

[25] For a recent review, see A. Mitra, Quantum Quench Dynam-
ics, Annu. Rev. Condens. Matter Phys. 9, 245 (2018).

[26] E. Bettelheim, A. G. Abanov, and P. Wiegmann,
Orthogonality Catastrophe and Shock Waves in a Non-
equilibrium Fermi Gas, Phys. Rev. Lett. 97, 246402 (2006).

[27] M. S. Foster, E. A. Yuzbashyan, and B. L. Altshuler, Quen-
tum Quench in One Dimension: Coherent Inhomogeneity
Amplification and “Supersolitons,” Phys. Rev. Lett. 105,
135701 (2010).

[28] M. S. Foster, T. C. Berkelbach, D. R. Reichman, and E. A.
Yuzbashyan, Quantum quench spectroscopy of a Luttinger
liquid: Ultrarelativistic density wave dynamics due to frac-
tionalization in an XXZ chain, Phys. Rev. B 84, 085146
(2011).

[29] J. Mossel1 and J.-S. Caux, Relaxation dynamics in the
gapped XXZ spin-1=2 chain, New J. Phys. 12, 055028
(2010).

[30] J. Lancaster and A. Mitra, Quantum quenches in an XXZ
spin chain from a spatially inhomogeneous initial state,
Phys. Rev. E 81, 061134 (2010).

[31] J. Lancaster, E. Gull, and A. Mitra, Quenched dynamics in
interacting one-dimensional systems: Appearance of cur-
rent-carrying steady states from initial domain wall density
profiles, Phys. Rev. B 82, 235124 (2010).

[32] C. Neuenhahn, A. Polkovnikov, and F. Marquardt, Local-
ized Phase Structures Growing Out of Quantum Fluctua-
tions in a Quench of Tunnel-coupled Atomic Condensates,
Phys. Rev. Lett. 109, 085304 (2012).

[33] J. L. Lancaster, Nonequilibrium current-carrying steady
states in the anisotropic XY spin chain, Phys. Rev. E 93,
052136 (2016).

[34] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti,
Transport in Out-of-Equilibrium XXZ Chains: Exact Pro-
files of Charges and Currents, Phys. Rev. Lett. 117, 207201
(2016).

[35] B. Doyon, J. Dubail, R. Konik, and T. Yoshimura, Large-
Scale Description of Interacting One-Dimensional Bose
Gases: Generalized Hydrodynamics Supersedes Conven-
tional Hydrodynamics, Phys. Rev. Lett. 119, 195301 (2017).

[36] M. Kormos, Inhomogeneous quenches in the transverse
field Ising chain: Scaling and front dynamics, SciPost Phys.
3, 020 (2017).

[37] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.065302 for the
derivation of the theory in Eq. (2a) from Eq. (1), the precise
specification of the integrals evaluated to obtain the results
in Figs. 2, 3, and 4, error analysis of these, the effects of
short-distance regularization on the dynamics, and for
comparison to the single-particle wave packet dynamics
in the pi-flux band structure.

[38] H. J. Schulz, Correlation Exponents and the Metal-Insulator
Transition in the One-Dimensional Hubbard Model, Phys.
Rev. Lett. 64, 2831 (1990).

PHYSICAL REVIEW LETTERS 122, 065302 (2019)

065302-6

https://doi.org/10.1103/PhysRevLett.97.156403
https://doi.org/10.1103/PhysRevLett.100.175702
https://doi.org/10.1103/PhysRevLett.103.056403
https://doi.org/10.1103/PhysRevLett.103.056403
https://doi.org/10.1038/nphys2205
https://doi.org/10.1103/PhysRevB.88.115144
https://doi.org/10.1103/PhysRevB.88.115144
https://doi.org/10.1103/PhysRevB.88.245405
https://doi.org/10.1103/PhysRevB.88.245405
https://doi.org/10.1103/PhysRevB.92.161111
http://arXiv.org/abs/1612.05671
https://doi.org/10.1103/PhysRevA.94.063637
https://doi.org/10.1103/PhysRevA.94.063637
https://doi.org/10.1146/annurev-conmatphys-031016-025451
https://doi.org/10.1103/PhysRevLett.97.246402
https://doi.org/10.1103/PhysRevLett.105.135701
https://doi.org/10.1103/PhysRevLett.105.135701
https://doi.org/10.1103/PhysRevB.84.085146
https://doi.org/10.1103/PhysRevB.84.085146
https://doi.org/10.1088/1367-2630/12/5/055028
https://doi.org/10.1088/1367-2630/12/5/055028
https://doi.org/10.1103/PhysRevE.81.061134
https://doi.org/10.1103/PhysRevB.82.235124
https://doi.org/10.1103/PhysRevLett.109.085304
https://doi.org/10.1103/PhysRevE.93.052136
https://doi.org/10.1103/PhysRevE.93.052136
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.21468/SciPostPhys.3.3.020
https://doi.org/10.21468/SciPostPhys.3.3.020
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.065302
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.065302
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.065302
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.065302
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.065302
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.065302
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.065302
https://doi.org/10.1103/PhysRevLett.64.2831
https://doi.org/10.1103/PhysRevLett.64.2831

