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We report x-ray free electron laser experiments addressing ground-state structural dynamics of the
diplatinum anion Pt2POP4 following photoexcitation. The structural dynamics are tracked with <100 fs
time resolution by x-ray scattering, utilizing the anisotropic component to suppress contributions from the
bulk solvent. The x-ray data exhibit a strong oscillatory component with period 0.28 ps and decay time
2.2 ps, and structural analysis of the difference signal directly shows this as arising from ground-state
dynamics along the PtPt coordinate. These results are compared with multiscale Born-Oppenheimer
molecular dynamics simulations and demonstrate how off-resonance excitation can be used to prepare a
vibrationally cold excited-state population complemented by a structure-dependent depletion of the
ground-state population which subsequently evolves in time, allowing direct tracking of ground-state
structural dynamics.
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Optical lasers with femtosecond pulse lengths have
enabled a host of studies of the excited-state kinetics
and dynamics. With the arrival of x-ray and electron
sources with pulse lengths in the subpicosecond regime,
the bond-length and bond-angle dynamics of the photo-
excited molecules can now be directly measured [1–3].
However, the majority of chemical reactions take place
between molecular species in their electronic ground
states and the energy landscape of ground-state molecules
is therefore of fundamental interest. The dynamics of
ground-state molecules have mainly been investigated
through time-resolved optical methods based on preparing
nonequilibrium, coherent vibrational states through
combined absorption and Raman processes involving
an excited-state potential surface. This is today a mature
field spanning several methodologies, e.g., resonant
impulsive stimulated Raman scattering (RISRS) and
coherent anti-Stokes Raman scattering (CARS) [4–8].
These spectroscopy methods provide a powerful approach
to characterizing vibrational eigenfrequencies for har-
monic modes, but do not directly access bond lengths
and angles. Similar limitations apply to the so-called
Lochfrass or “R-dependent ionization” spectroscopies,

where the ground state is selectively depleted as a function
of some key structural parameter [9–12].
The reliance on indirect, albeit powerful, spectroscopic

methods to probe the potential energy landscape of ground-
state molecules has been due to a lack of structurally
sensitive probes with the requisite time resolution. Here
we show how hard x-ray free electron laser (XFEL) sources
[13] now make it possible to directly map the structural
dynamics of an ensemble of molecules as it evolves on the
ground-state potential surface. Illustrating this approach, we
investigate how the ground-state population of the much-
studied diplatinum anion PtPOP [Pt2ðP2O5H2Þ4�4− (Fig. 1)
[14–23] evolves following Pt-Pt distance-dependent photo-
depletion of the ground-state population.
Our structural analysis of the x-ray data is compared

with multiscale Born-Oppenheimer molecular dynamics
(BOMD) simulations, combining quantum mechanics
with molecular mechanics (QM/MM) to calculate forces
[51–53]. Following Fleming and co-workers [41], the
simulations are used to model the dynamics of a
ground-state nonequilibrium density created by the pump
pulse through propagation of a so-called hole in the
classical ground-state equilibrium distribution mirroring
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at time zero the distribution promoted to the excited state.
The ground-state dynamics predicted this way becomes
increasingly accurate in the high temperature limit (T ≫ Θ,
where Θ ¼ hν=kB is the vibrational temperature) as more
vibrational levels of the ground state are initially populated
(for PtPOP the ground-state vibrational temperature is
170 K giving a vibrational excitation fraction [54] of
≈0.6 at 300 K).
The photophysics of PtPOP have been studied for four

decades [22] and it is well established that excitation in the
absorption band centered at 370 nm promotes an electron
from the antibonding 5dσ� HOMO orbital to the bonding
6pσ LUMO orbital [14]. Excitation to the pσ orbital,
located between the two Pt atoms, leads to a shortening of
the Pt-Pt equilibrium distance from dgsPtPt ¼ 2.9–3.0 to
desPtPt ¼ 2.7–2.8 Å, with the bond shortening being closely
similar in both the singlet (τS1 ¼ 10–30 ps) and triplet
(τT1

¼ 10 μs) excited states [15–18,23]. Figure 1 shows the
potential surfaces of the ground and S1 excited state, the
shape and positions of which determine the structural
dynamics following photoexcitation. Excitation around
λ ¼ 370 nm leads to well-defined harmonic oscillations
with period Tes close to 0.225 ps [19,21,23] as molecules
near the bottom of the ground-state potential surface are
promoted to S1.
Low-temperature optical spectroscopy in the crystal

phase [14] and Raman spectroscopy in solution [55,56]
determined the ground-state potential to be also highly
harmonic but slightly softer than the singlet- and triplet-
state potentials with a Pt-Pt oscillation with period
Tgs ¼ 0.285 ps. Whereas much effort has been devoted

towards investigating the energy dissipation mechanisms
and structural dynamics of the excited-state structure(s)
of PtPOP [53,57–59], no studies have directly addressed
the ground-state dynamics. Here we utilize off-resonance
excitation at 395 nm to selectively excite solute molecules
near the excited-state equilibrium geometry, see Fig. 1.
To complement the experiments, the structural evolution

following off-resonance excitation of PtPOP was also
investigated via multiscale QM/MM BOMD simulations.
Full descriptions of the methods are given in Refs. [52,53].
Briefly, PtPOP was modeled using DFT with the BLYP
functional [37,38], and a representation of the Kohn-Sham
(KS) orbitals in terms of tzp basis set for the Pt atoms
and dzp for the rest of the atoms [36]. The TIP4P force field
[60] was used for the surrounding solvent. The simulations
were realized using the BOMD code and QM/MM inter-
facing scheme [52] implemented in ASE [32,33] and
GPAW [34,35].
To model the off-resonance excitation process, the

simulation procedure first established a large set of
ground-state configurations. From these, a subset with
sufficiently short Pt-Pt distances to allow excitation to
the singlet excited state by a 395 nm (≈3.14 eV) photon
was selected. Photoexcitation to the S1 singlet state of
PtPOP was modeled by starting 50 independent trajectories
from this subset of ground-state configurations using the
ΔSCF method [53,61]. The procedure thus established
two sets of trajectories, representing propagation of a
depleted ground-state ensemble and of an excited-state
ensemble. Figure 1 shows the dPtPt distributions following
the excitation event. We note that the semiclassical picture
used to predict the dynamics taking place in the ground
state after interaction with a short pump pulse implicitly
incorporates effects that are commonly thought of as
originating from a combination of absorption and impulsive
stimulated Raman scattering [41].
Laser-pump or x-ray probe experiments were conducted

at the LCLS facility. The XFEL delivered < 50 fs 9.5 keV
x-ray pulses at 120 Hz to the XPP experiment station [62],
where the x-ray beam was focused to 30 × 30 μm2. Laser
excitation was by <50 fs 395(5) nm pulses, focused to a
circular spot of <150 μm diameter and with a pulse energy
of 3 μJ=pulse. The sample consisted of a 50 μm diameter
free-flowing cylindrical jet of an 80 mM aqueous solution of
PtPOP, with a flow speed sufficient to ensure full replenish-
ment between pump and probe events. Scattered x rays were
detected by the 2D CSPAD [63] detector placed ≈5 cm
behind the sample, allowing a Q-space coverage up to
Q ¼ 5 Å−1, with Q ¼ ð4π=λÞ sinð2θ=2Þ, where 2θ is the
scattering angle and λ is the x-ray wavelength (1.31 Å).
Following detector corrections, background subtraction, and
outlier rejection as previously described [64], 2D difference
scattering images were constructed by subtracting laser-off
images from laser-on images, where the laser had interacted
with the sample at time t relative to the x-ray probe.

FIG. 1. Ground- and excited-state potential surfaces and QM/
MM BOMD simulation of the structural dynamics following
photoexcitation at 395 nm. The distribution of Pt-Pt distances is
given by blue, red, and green lines, representing the time steps
t ¼ 0, t ¼ Tgs;hole

sim =2, and t ¼ 2Tgs;hole
sim . An animation of the time

evolution can be found in the Supplemental Material [24].
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Designating the scattering patterns with and without the
excitation laser interacting with the sample as “On” and
“Off” the difference signal is

ΔSðtÞ ¼ SOnðtÞ − SOff : ð1Þ

For the experiments and analysis described here, the
individual difference scattering images were rebinned and
subsequently averaged in 10 fs time bins according to the
upstream timing tool [65] with approximately 150 images in
each bin.
The contribution to the scattering patterns from the

solute molecules is designated as either gs or es corre-
sponding to ground- and excited-state molecules, the Off
signal is the scattering from just the ground-state equilib-
rium distribution of structures, whereas the On signal arises
from two contributions:

SOff ¼ Sgs;eq;

SOnðtÞ ¼ αSesðtÞ þ ½Sgs;eq − αSgs;holeðtÞ�; ð2Þ

where α denotes the fraction of photoexcited PtPOP
molecules in the probed sample volume at the given time
delay. The term in the parentheses describes the population
of ground-state molecules, of which the fraction α has been
promoted to the excited state. The difference scattering
signal is thus given by

ΔSðtÞ ¼ α½SesðtÞ − Sgs;holeðtÞ�: ð3Þ

As such, the acquired difference scattering signal arises
from both the excited-state population as well as from
the “hole” that the excitation pulse created in the
ground state.
The 2D difference images as acquired are anisotropic,

with the anisotropic contribution to the scattering arising
from preferential excitation of molecules with the transition
dipole moment aligned parallel with the polarization of the
excitation laser pulse. When the subsequent structural
changes have a specific orientation with respect to the
transition dipole moment, then the resulting scattering
patterns will necessarily be anisotropic. This is the case
here, as the dσ� → pσ absorption peak has a transition
dipole moment aligned along the Pt-Pt axis along which the
Pt nuclei contract following photoexcitation. The difference
scattering signal from such a distribution of solute mole-
cules is described by [66–68]

ΔSðQ; tÞ ¼ ΔS0ðQ; tÞ þ P2½cosðθqÞ�ΔS2ðQ; tÞ; ð4Þ

here the geometry of the experiment is introduced through
θq, the angle between the laser polarization axis and Q,
with P2 being a second-order Legendre polynomium.
Assuming that the solute in each of the vibrational

ensembles es and gs,hole can be represented by a single

average structure, the isotropic ΔS0 and anisotropic ΔS2
parts of the solute contributions to the difference scattering
signal are calculated from [68,69]

S0ðQÞ ¼
XN

i;j

fiðQÞfjðQÞ sinðQrijÞ
Qrij

;

S2ðQÞ ¼ −c2
XN

i;j

fiðQÞfjðQÞP2½cosðξijÞ�j2ðrijÞ; ð5Þ

here we have suppressed the time dependence for clarity of
presentation. In these expressions, rij is the length of the
vector rij connecting atoms i and j and ξij is the angle
between rij and the transition dipole moment of the
molecule. j2 the second-order spherical Bessel function
and fi refers to the form factor of atom i in the molecule
consisting of N atoms. The time evolution of the orienta-
tional distribution is described by the prefactor c2ðtÞ [68].
For the structural analysis presented here, the isotropic

ΔS0ðQÞ and anisotropic ΔS2ðQÞ contributions to the
difference signal were separated [67,68]. The analysis
presented below is focused on ΔS2ðQ; tÞ, as this part of
the full difference signal arises only from structural changes
with a well-defined relationship to the excitation laser
polarization axis and as such contains no contribution from
the (isotropic) heating of the bulk solvent. The analysis of
ΔS0ðQ; tÞ is shown in the Supplemental Material [24], with
key results reported in Figs. 3 and 4.
Figure 2 shows ΔS2ðQ; tÞ, where following photo-

excitation at t ¼ 0 a positive feature appears at low Q,
indicative of a decrease in the average Pt-Pt distance in the
probed sample volume. In the following picoseconds, the
difference signal oscillates in intensity with little change in
signal shape. Applying a singular value decomposition to
ΔS2ðQ; tÞ (Supplemental Material [24]), the inset shows
the Fourier transform of the time dependence of the

FIG. 2. ΔS2ðQ; tÞ with the color scale given in ‰ units of total
signal. The inset shows the Fourier transform of the first right-
singular vector of an SVD analysis jF ðVΔS2

1 Þj. A sharp peak at
the 0.28 ps ground-state period of PtPOP is observed.
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acquired signal as described by the first right-singular
vector of the difference signal, jF ðVΔS2

1 Þj. From this, we
find that structural dynamics of the photoexcited sample
gives rise to a difference scattering signal exhibiting a
pronounced oscillatory behavior with a period Tpeak close
to 0.285 ps. This value is in very good agreement with
the ground-state frequency of the Pt-Pt oscillations and
significantly different from the Tes ¼ 0.210–0.225 ps
period of the singlet and triplet excited states [14,19,21].
From time-domain Fourier transforms of ΔS0 and ΔS2
(Supplemental Material [24]), we estimate that contribu-
tions from excited-state dynamics (Tes

peak ¼ 0.21–0.23 ps)
to the observed difference signals is at most around 10%.
We ascribe this to two main factors: (i) off-resonance
excitation, and (ii) within-pulse motion of the Pt nuclei
smearing out the dynamics in the excited state more
significantly than in the ground state. As such, photo-
excitation at 395 nm preferentially excites the subpopula-
tion of PtPOP molecules with short Pt-Pt distances, that is,
near the potential energy minimum of the singlet excited
state (Fig. 1). The photoexcited molecules therefore exhibit
little or no coherent vibrational dynamics. Simultaneously,
the ground-state population as characterized by the dis-
tribution of Pt-Pt distances is now no longer in equilibrium,
as molecules with short Pt-Pt bond lengths have been
preferentially excited. As the ensemble of molecules
evolves, the ground-state population of molecules charac-
terized at t ¼ 0 by long Pt-Pt distances (dPtPt ∼ 3.1 Å) will
after Tgs=2 have moved to short Pt-Pt distances, thus filling
the hole at dPtPt ¼ 2.77 Å, which consequently moves to
long Pt-Pt distances. In the following picoseconds, the hole
propagates on the ground-state potential surface, eventually
broadening to reflect the equilibrium ground-state distri-
bution of Pt-Pt distances.
The difference signal ΔSðQ; tÞ was analyzed by struc-

tural fitting, employing a model incorporating a Pt-Pt
distance-dependent depletion of the ground-state popula-
tion as described above.
Within this analysis framework [17,70], the excitation

fraction and key structural parameters (here dPtPt) are
known to be strongly correlated [71]. To enable the robust
determination of bond-length dynamics, the excitation
fraction was first estimated by analyzing the difference
signal at t ¼ 5 ps where both the excited- and ground-state
populations have reached their equilibrium distributions.
The model applied in this step utilizes DFT-derived
structures for the ground and excited state of PtPOP while
maintaining the excitation fraction α as a free parameter.
Obtaining a photoexcitation fraction α ¼ 0.018ð2Þ, the
second step of the structural analysis relies on locking this
parameter in the analysis of the full data set. The difference
signal modeling further assumes the excited-state popula-
tion to have dPtPt ¼ 2.77 Å for all time delays, while the
ground-state distribution is assumed to be given by a

combination of the ground-state equilibrium structure
minus a hole characterized by a time-dependent Pt-Pt
distance dholePtPtðtÞ. The model with which the observed
time-dependent difference scattering signal was fit is thus

ΔS2ðQ; tÞ ¼ αfSes2 ðQÞ − Sgs;hole2 ½Q; dholePtPtðtÞ�g; ð6Þ

with all structural dynamics parametrized through the
position of the ground-state hole, dholePtPtðtÞ and with the
scattering signals calculated through Eq. (5).
Figure 3 shows the fit at a representative time delay,

t ¼ 0.25 ps, and Fig. 4(a) shows the best-fit value for dholePtPt
as a function of time delay t. dholePtPt is observed to move
towards larger values immediately after excitation and
then oscillates around the ground-state equilibrium dis-
tance in agreement with the discussion above. The time
dependence is well described by an (IRF-broadened)
exponentially damped sine function convoluted with a
step function centered at t ¼ 0. Fitting this function to
dholePtPtðtÞ we find a period Tgs;hole ¼ 0.283ð1Þ ps and decay
time τgs;hole ¼ 2.2ð2Þ ps.
Figure 4(b) shows the corresponding results of our

QM/MM BOMD simulations. From these, we obtain a
period of Tgs;hole

sim ¼ 0.271 ps, which agrees to within 5%
with the experimental data. The decay of the oscillations
takes place in τgs;holesim ¼ 0.7 ps, which is 3 times faster than
observed experimentally. We tentatively ascribe this differ-
ence as arising from the simulations overestimating the
anharmonicity of the Pt-Pt potential. This is supported by
the observation that the period of the simulated oscillations
changes by around 20 fs from the first oscillation to the last,
while no change can be discerned from the analysis of the
experimental data.
The period and decay time of the observed oscillations

derived from the ΔS2 analysis, Tgs;hole ¼ 0.283ð1Þ ps and
τgs;hole ¼ 2.2ð2Þ ps, are in very good agreement with
optical studies of PtPOP in ethylene glycol and in

FIG. 3. ΔS2 and model fit at t ¼ 0.25 ps after photoexcitation.
Inset shows the corresponding fit of ΔS0 at the same time delay.
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acetonitrile where Tgs ¼ 0.281ð3Þ and τgs ¼ 2.2ð2Þ ps
were found [19,23]. The slightly faster decay time observed
in the ΔS0 analysis [τgs;hole ¼ 1.7ð3Þ ps] is likely spurious
and arising from a small contribution from two-photon
excitation of PtPOP to ΔS0ðQ; tÞ as discussed in the
Supplemental Material [24].
The amplitude of the dholePtPt oscillation is 0.06(1) Å, which

is somewhat shorter than inferred from optical data [19] but
in full agreement with the simulation result shown in Fig. 4.
The lower amplitude can thus be interpreted as due to the
analysis tracking only the central position of the dholePtPt
distribution which rapidly broadens (Fig. 1).
The results presented demonstrate the preparation of a

vibrationally cold excited-state population and the evolu-
tion of a ground-state hole. Comparison with simulations
allows direct and experimentally supported visualization
of how the population distributions evolve on both the
ground- and excited-state potential surfaces. Future experi-
ments with better Q-space coverage will allow us to follow
these dynamics in more detail, as recently discussed from a
theoretical point of view [72] and experimentally realized
for the FeðbpyÞ3 system using XAFS [73]. A key feature of
the present experiment is the controlled preparation of a
vibrationally cold excited state and we suggest that further
studies utilizing vibrationally cold excited states may shed
light on the temperature-dependent and highly elusive [22]
mechanism of the singlet-triplet transition in PtPOP.

In summary, excitation with ultrashort optical laser
pulses in combination with SASE-based x-ray laser sources
can be used to prepare and track well-defined populations
on the ground- and excited-state potential surfaces of
molecules in solution. By choosing off-resonance excita-
tion, the excited population can be prepared in a vibra-
tionally cold state, allowing tracking of the ground-state
dynamics alone.
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