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The region of heavy calcium isotopes forms the frontier of experimental and theoretical nuclear structure
research where the basic concepts of nuclear physics are put to stringent test. The recent discovery of the
extremely neutron-rich nuclei around 60Ca O. B. Tarasov et al. [Phys. Rev. Lett. 121, 022501 (2018)] and
the experimental determination of masses for 55–57Ca S. Michimasa et al. [Phys. Rev. Lett. 121, 022506
(2018)] provide unique information about the binding energy surface in this region. To assess the impact of
these experimental discoveries on the nuclear landscape’s extent, we use global mass models and statistical
machine learning to make predictions, with quantified levels of certainty, for bound nuclides between Si
and Ti. Using a Bayesian model averaging analysis based on Gaussian-process-based extrapolations we
introduce the posterior probability pex for each nucleus to be bound to neutron emission. We find that
extrapolations for drip-line locations, at which the nuclear binding ends, are consistent across the global
mass models used, in spite of significant variations between their raw predictions. In particular, considering
the current experimental information and current global mass models, we predict that 68Ca has an average
posterior probability pex ≈ 76% to be bound to two-neutron emission while the nucleus 61Ca is likely to
decay by emitting a neutron (pex ≈ 46%).
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Introduction.—How many protons and neutrons can
form a bound atomic nucleus? Out of about 3 200 isotopes
known [1] only 286 primordial nuclides have existed in
their current form since before the Earth was formed. They
form the valley of stability on the nuclear landscape.
Moving away from the region of stable isotopes by adding
neutrons or protons, one enters the regime of short-lived
radioactive nuclei, which are beta unstable. Nuclear exist-
ence ends at the “drip lines,” where the last nucleons are no
longer attached to the nucleus by the strong interaction and
drip off. According to current theoretical estimates [2,3] the
number of bound nuclides with atomic number Z between 2
and 120 is around 7 000.
The particle stability of a nuclide is determined by its

separation energy, i.e., the energy required to remove from it
a single nucleon or a pair of like nucleons. If the separation
energy is positive, the nucleus is bound to nucleon decay;
if the separation energy is negative, the nucleus is particle
unstable. In this Letter, we study the one-neutron (S1n) and
two-neutron (S2n) separation energies of neutron-rich
nuclei. The drip line is reached when the separation energy
reaches zero; hence, one can talk about the one-neutron drip
line when S1n ¼ 0 and the two-neutron drip line when
S2n ¼ 0. Very weakly bound, or unbound, nuclei that lie in
the immediate vicinity of drip lines are referred to as
threshold systems. The separation energies and drip-line
positions are strongly affected by nucleonic pairing, or

nuclear superfluidity [4]. Since it costs energy to break a
nucleonic pair, nuclei with even numbers of nucleons are
more bound than their odd-nucleon-number neighbors. As a
result, the one-nucleon drip line is reached earlier than the
two-nucleon drip line, which results in a highly irregular
pattern of nuclear existence that meanders between odd- and
even-particle systems.
The territory of neutron-rich nuclei is arguably the most

fertile ground for breakthroughs in nuclear structure
research and the Ca region is of particular interest. The
heaviest Ca isotope discovered to date is 60Ca [5]. This
nucleus, having Z ¼ 20 protons and N ¼ 40 neutrons, i.e.,
containing 12 more neutrons than the heaviest stable
calcium isotope, was found recently together with seven
other neutron-rich nuclei: 47P, 49S, 52Cl, 54Ar, 57K, 59Ca, and
62Sc. In addition, one event consistent with 59K was
registered [5]. This discovery extends the range of known
nuclei in this region, previously established in Refs. [6,7].
In separate experimental studies, the atomic masses of
55–57Ca were determined [8] and the uncertainties of the
52–55Ti mass values were significantly reduced [9].
The Ca region is arguably the most critical one to look at

from a theory perspective, because it provides an exciting
opportunity to bridge the refined methods based on realistic
interactions, in which all A nucleons are considered as
elementary degrees of freedom, with nuclear density func-
tional theory (DFT) employing energy density functionals
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(EDFs) expressed in terms of proton and neutron local
densities and currents. During recent years, the A-body
approaches reached selected medium-mass nuclei and pro-
videdpredictions for their global properties and spectroscopy
[10,11]. Nuclear DFToffers a more coarse-grained picture of
nuclei than A-body approaches, but can be applied globally
across the nuclear chart from light to superheavy nuclides
[2,3]. The associated EDFs are primarily constrained by
global nuclear properties such as binding energies and radii
[12]. By considering symmetry-breaking effects, nuclear
DFT can describe on the same footing spherical nuclei close
to magic shells and deformed open-shell systems. A well-
controlled link between A-body methods and DFT is
essential if one aims to understand nuclei and nucleonic
matter from a bottom-up perspective [13,14].
When it comes to the Ca chain itself, A-body methods

provide an excellent description of binding energies, charge
radii, and spectroscopy up to 54Ca, depending on the
interaction used [15–22]. Likewise, DFT approaches with
globally optimized EDFs reproduce measured global prop-
erties. However, there is no consensus when it comes to
extrapolations towards the neutron drip line. Namely,
A-body methods with two- and three-body interactions
predict the two-neutron drip line around 60Ca [22,23] while
the DFT approaches locate it around 70Ca [2,13].
In this Letter, we investigate what global nuclear mass

models, aided by Bayesian machine learning, can tell us
about the topography of the mass surface and neutron drip
lines in the Ca region. Our methodology roughly follows the
recent paper Ref. [24]. Since Bayesian machine learning
requires a sufficient number of data points in order to make
extrapolations with reasonable certainty, onemust workwith
models which are mostly global. To this end, we consider
global models based on nuclear DFT with realistic Skyrme
EDFs as well as the more phenomenological mass models
FRDM-2012 and HFB-24 rooted in the mean-field theory.
Density functional theory calculations.—We used the

DFT mass predictions based on SkM* [25], SkP [26], SLy4
[27], SV-min [28], UNEDF0 [29], and UNEDF1 [30] EDFs
stored in the theoretical database MassExplorer [31]. The
UNEDF2 [32] mass table has been computed exactly in the
same way as in Ref. [2]. The DFT predictions are compared
to the results of the global mass models FRDM-2012 [33]
and HFB-24 [34].
DFT calculations were carried out for even-even nuclei as

wewant to avoid additional complications and uncertainties
related to the choice and treatment of quasiparticle con-
figurations in odd-A and odd-odd systems [35–37]. Binding
energies of odd-A and odd-odd nuclei were obtained from
the binding energy values and average pairing gaps com-
puted for even-evenneighbors. The associated error onS1n is
expected to be 200–300 keV [36]. For completeness, in our
analysis we also considered even-even nuclei predicted to
lie just beyond the two-neutron drip line, i.e., those with a
slightly positive neutron chemical potential. Those results

should be considered as rough estimates as the Hartree-
Fock-Bogoliubov (HFB) theory does not guarantee that
the nucleonic densities and fields are localized in this
regime [26,38].
Statistical analysis.—We first compute the so-called sepa-

ration energy residuals, i.e., the differences δ1n=2nðZ;NÞ ≔
Sexp1n=2nðZ;NÞ − Sth1n=2nðZ;NÞ, between experimental values
andmodel predictions ofS1n=2n, basedon the training datasets
AME2003 [39] and AME2016* consisting of AME2016
masses [40] supplemented by the recently updated 52–55Ti
masses [9] (the subscripts 1n=2n are used to indicate either
one-neutron or two-neutron separation energies). Using the
values of δ1n=2nðZ;NÞ for those training nuclei ðZ;NÞ, we
construct emulators δstat1n=2nðZ;NÞ using a Bayesian machine
learning analysis of extrapolations via Gaussian processes
(GPs) following the methodology previously developed in
Ref. [24]. Our likelihood, theGPmodel, is a popularway [41]
of interpolating or extrapolating quantities from neighboring
ones. It is strongly based on the assumption of a local spatial
structure in the data, and contains required uncertainty
modeling. We took the GP model in a form of a mean-zero
Gaussian random field with a quadratic exponential spatial
covariance kernel [42] featuring three parameters: its scale η,
which represents a noise intensity, and two characteristic
spatial lengths ρ: one in the proton direction and one in the
neutron direction; see Supplemental Material (SM) [43] for
details. We performed the statistical analysis independently
on the sets ofS1n andS2n, respectively, for odd-N and even-N
nuclei, and independently for odd-Z and even-Z nuclei.
Posterior samples are obtained via 100 000 iterations of

the Metropolis [44] algorithm, from which the posterior
mean value provides our predictions while Bayesian
credibility intervals (CIs) are built using the corresponding
posterior quantiles, symmetric around the mean, at all
uncertainty levels. We also evaluate the performance of the
prediction via a comparison of the rms deviation before and
after statistical refinement. It is worth noting that our
statistical CI estimates take into account all possible
sources of uncertainty including statistical, numerical,
and systematic uncertainty, including model approxima-
tions and modeling uncertainty within the DFT framework.
The unknown separation energies are predicted sta-

tistically by combining the theoretical predictions and
the credibility intervals for the estimated residuals. For
instance, the estimated prediction at ðZ;NÞ for the one-
neutron (respectively, two-neutron) separation energy is
Sest1n=2nðZ;NÞ ¼ Sth1n=2nðZ;N; Þ þ δstat1n=2nðZ;NÞ where the
last term is the Bayesian posterior mean prediction for
the residual. A similar strategy of correcting model pre-
dictions outside the training domain by estimated residuals
has recently been applied in Ref. [45]. (Applications of
statistical methods to mass predictions have been described
in several papers [46–53], primarily in the context of
interpolations.) The new aspect of our work lies in that
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we apply the Bayesian method to provide a full quantifi-
cation of the uncertainty surrounding the point estimate.
For more details we refer the reader to the SM.
Results.—The GP’s superior predictive power was

assessed in Ref. [24] for the S2n of even-even nuclei. The
present work achieves comparable performances for odd-Z
nuclei and for S1n values, with prediction improvements
ranging from 20% to 40% for most models (see the SM).
To further assess the performance of our approach, we apply
it to the recently measured masses of 55–57Ca [8]. As seen in
Fig. 1, the predictedS1n values for 55;57Ca are consistentwith
experiment for most models while the S2n of 56Ca is slightly
overestimated. The impact of newer mass measurements
beyond AME2003 on our predictions is minor; this is
because very few data points that can impact our local
GP model were added in the Ca region. The large deviation
in the S1n of 55Ca in HFB-24 is noteworthy. As illustrated in
the SM and Ref. [24], neutron separation energies predicted
by this model often exhibit irregular behavior.
Figure 2 shows extrapolated separation energies for the

Ca isotopic chain for three global mass models corrected
with the GP emulator. (Here and in the following we shall
use the notation “modelþ GP” (e.g., UNEDF0þ GP) to
emphasize that the statistical corrections are done with
the GP emulator.) The models are consistent overall once
the statistical correction and uncertainty are taken into
account. According to the computed empirical coverage
probabilities [54,55], our credibility intervals are slightly
conservative for large credibility levels (see Sec. I C of the
SM for more discussion).

For a given isotopic chain and nuclear model, one obtains
an upper bound on the location of the first isotope at which
the binding energy becomes negative, depending on the
choice of credibility level. For instance, the posterior mean
values (full lines) of the UNEDF0þ GPmodel place the 2n
drip line for Ca aroundN ¼ 54, while considering the lower
bound of the one-sigma credibility intervals provides that it
is placed beyond N ¼ 46 with probability 84%. This very
wide interval suggests that the posterior distribution of the
separation energies is perhaps not the most appropriate
quantity to consider. To this end, for each model, we
consider the probability pexðZ;NÞ of the predicted separa-
tion energy S�1n=2nðZ;NÞ to be positive under the posterior
probability distribution conditioned on the experimental
masses available. In the Bayesian paradigm, this probability
is pexðZ;NÞ ≔ pðS�1n=2nðZ;NÞ > 0jS1n=2nÞ. The insert in
Fig. 2 shows pex for the Ca chain. The model-averaged
existence probabilities for the Ca region are shown in
Fig. 3(a) assuming uniform prior weights. (For the values
of pex for individual models, see Sec. III. C of the SM.) As
noticed in Ref. [5], the N ¼ 35 isotones 52Cl and 53Ar, as
well as 49S represent a challenge for nuclear mass models.
Our results in Fig. 3(a) confirm this finding through the low
calculated prior-average pex values for these nuclei. Indeed,
with the exception of SV-min, UNEDF0, and FRDM-2012,
othermodels calculate them to be eithermarginally bound or
to lie outside the one-neutron drip line. Since 49S, 52Cl, and
53Ar do exist [5,6], this prior knowledge can inform the
model averaging process [56–58] throughposteriorweights:

wk ≔ pðMkj52Cl; 53Ar; 49S existÞ ð1Þ

(see additional discussion in the SM). Theweightwk reflects
the ability of themodelMk to predict the existence of nuclei
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FIG. 1. One-neutron separation energy for 55;57Ca (left) and
two-neutron separation energy for 56Ca (right) calculated with the
nine global mass models with statistical correction obtained with
GP trained on the AME2003 (GPþ 2003) and AME2016*
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theoretical results are one-sigma credible intervals computed with
GP extrapolation.
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in the Ca region. In this respect UNEDF0þ GP is superior,
see Table S1 in the SM. We emphasize that conditioning
with respect to these three nuclei corresponds actually to
conditioning over the observed nuclei in the whole Ca
region, since other experimentally-observed isotopes
are predicted to be bound by the global models considered.
The values of pex obtained in this way are shown in
Fig. 3(b).
As shown in Figs. 2 and 3, the nucleus 68Ca is expected

to be bound. However, as seen in Fig. 2, S2n approaches
zero very gradually; this results in a spread of predictions of
individual models. According to the average pex, 61Ca and
71Ti are expected to be 1n unstable while the 2n drip line
extends all the way to 72Ca and 78Ti. The nucleus 59K—for
which one event was registered in Ref. [5]—is expected to
be firmly neutron bound. By comparing Figs. 3(a) and 3(b)
one can immediately assess the impact of the discovery of
52Cl, 53Ar, and 49S on drip-line predictions: the 2n drip line
obtained with posterior weights generally extends by two
neutron numbers for odd-Z chains.
Conclusions.—In summary, in this Letter we quantified

the neutron stability of the nucleus in terms of its existence
probability pex, i.e., the Bayesian posterior probability that
the neutron separation energy is positive. Our results are
fairly consistent with recent experimental findings [5]: 60Ca

is expected to be well bound with S2n ≈ 5 MeV while 49S,
52Cl, and 53Ar are marginally bound threshold systems.
We emphasize that the nuclear model itself is not capable

of gauging the likelihood of existence. To overcome this
problem, we introduce a machine learning algorithm, with a
stochastic exploration part and a deterministic modeling
part, which, when combined, result in Bayesian statistical
machine learning. One could say this is supervised learn-
ing, with the nuclear modeling and the choice of priors
representing two aspects of the supervision.
The Bayesian model averaging employed in this Letter

is based on global DFT or mean-field models. Therefore
the computed probabilities of existence are conditional
on the correctness of the DFT framework. Currently, many
A-body methods based on realistic internucleon inter-
actions calculate the two-neutron drip line at 60Ca. Since
Bayesian machine learning requires a sufficient number of
data points to extrapolate with reasonable certainty, A-body
models are not yet amenable to statistical analysis as the
corresponding global mass tables are difficult to compute.
It will be extremely valuable to apply a Bayesian uncer-
tainty quantification analysis to A-body mass tables when
those become available.
The extrapolation outcomes discussed in this Letter will

be tested by experimental data from rare-isotope facilities.

FIG. 3. Posterior probability of existence of neutron-rich nuclei in the Ca region averaged over all models. Top: Uniform model
averaging. Bottom: Averaging using posterior weights [Eq. (1)] constrained by the existence of 52Cl, 53Ar, and 49S. The range of nuclei
with experimentally known masses is marked by a yellow line. The red line marks the limit of nuclear domain that has been
experimentally observed; nuclei to the right of the red line await discovery. The estimated drip line that separates the pex > 0.5 and
pex < 0.5 regions is indicated by a blue line.
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New mass measurements on neutron-rich nuclei will
help to develop increasingly more quantitative models of
the atomic nucleus and also allow for a higher-fidelity
statistical analysis. As illuminated by our Bayesian analysis
of 49S, 52Cl, and 53Ar, experimental discoveries of new
nuclides will also be crucial for delineating the detailed
behavior of the nuclear mass surface, including the place-
ment of particle drip lines.
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