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We derive an action whose equations of motion contain the Poisson equation of Newtonian gravity. The
construction requires a new notion of Newton-Cartan geometry based on an underlying symmetry algebra
that differs from the usual Bargmann algebra. This geometry naturally arises in a covariant 1=c expansion
of general relativity, with c being the speed of light. By truncating this expansion at subleading order, we
obtain the field content and transformation rules of the fields that appear in the action of Newtonian gravity.
The equations of motion generalize Newtonian gravity by allowing for the effect of gravitational time
dilation due to strong gravitational fields.
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The idea that gravity is geometry was pioneered by
Einstein in his celebrated theory of general relativity
(GR). In GR, due to Einstein’s equivalence principle, the
underlying geometry is (pseudo-)Riemannian, which
ensures that one has local Lorentz symmetry and hence
the laws of physics locally reduce to those of special
relativity. However, spacetime covariance is a property of
any physical theory, which led Cartan [1,2] (see also, e.g.,
[3,4]) to geometrize Newtonian gravity usingwhat is known
as Newton-Cartan (NC) geometry. The latter results from
applying an equivalence principle that requires freely falling
observers to see Galilean laws of physics, giving rise to a
geometry with local Galilean invariance.
However, while the Poisson equation of Newtonian

gravity can be geometrized using NC geometry, an out-
standing question has been to find an action principle for
Newtonian gravity, paralleling the Einstein-Hilbert action in
GR. In this Letter we present such an action and show that
it requires a novel type of geometry. This geometry does
encapsulate NC geometry in its original form when time is
absolute (as is the case inNewtonian gravity), but is based on
an underlying symmetry structure and corresponding set
of geometric fields, which goes beyond the Bargmann
algebra—the centrally extended Galilean algebra.
NCgeometry and its recently discoveredversion, torsional

Newton-Cartan (TNC) geometry [5,6] (referred to as type I
TNC geometry below), has been very useful for studying

aspects of field theories with Galilean symmetries.
Furthermore, gravity theories for type I TNC geometry (with
broken particle number gauge symmetry) have been recently
studied as well and shown to correspond to Hořava-Lifshitz
gravity (see, e.g., [7,8]). It has proven difficult to write down
actions for type I TNC geometry that preserve U(1) particle
number, though exceptions exist in 2þ 1 dimensions [9,10],
but these require an additional field.
By taking a critical look at Newtonian gravity, we will

show that an action involving type I TNC geometry is
incompatiblewith theway in which themass source appears
in the Poisson equation. This is because in type I TNC
geometry mass sources torsion, which is not compatible
with the notion of absolute time (and hence zero torsion)
of Newtonian gravity. The key to identifying the correct
geometry lies in carefully considering the properties of a
large speed of light limit of GR, as was recently revisited in
[11] following earlier work [12,13].
We present in this Letter a novel type of NC geometry,

dubbed type II TNC geometry, which for zero torsion
includes the standard (type I) NC geometry used to geom-
etrize Newtonian gravity, and which allows us to formulate
an action, in any spacetime dimension D ¼ dþ 1. To this
end, it is crucial to allow for more general time (lapse)
functions than the absolute time of Newtonian gravity. We
will show that, while type I TNC geometry follows from
gauging the Bargmann algebra [7,14] (see also [15,16]),
type II TNC geometry follows from a novel nonrelativistic
symmetry, which turns out to be a nontrivial contraction of
the direct sum of the Poincaré and Euclidean algebras in
D ¼ dþ 1 dimensions.
The action given in this Letter describes the dynamics

of a well-defined truncation of the nonrelativistic limit of
GR and has direct physical relevance in a post-Newtonian
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regime, including the effects of strong gravitational fields,
e.g., via gravitational time dilation. More generally, it can
be regarded as providing an off shell definition of the
nonrelativistic gravity corner of the Gcℏ Bronstein cube of
physical theories and, as such, presents a principle towards
constructing a nonrelativistic quantum gravity theory. The
latter could open up a third road towards (relativistic)
quantum gravity, in contradistinction to the usually traveled
paths approaching it via relativistic quantum field theory or
general relativity.
Newton-Cartan geometry.—Torsional Newton-Cartan

geometry consists of a clock form τμ, a rank-d symmetric
tensor hμν with signature ð0; 1;…; 1Þ, and a U(1) con-
nection mμ. These describe a manifold with a Galilean
tangent space structure, geometrizing the Galilean equiv-
alence principle. In Galilean invariant theories, the total
mass is conserved with the mass current coupling to a U(1)
gauge connection mμ. The TNC fields transform as tensors
under diffeomorphisms (ξμ) and exhibit furthermore a set of
local symmetries corresponding to Galilean (or Milne)
boosts (λμ) and a U(1) gauge transformation (σ) associated
with mass conservation,

δτμ ¼ Lξτμ; δhμν ¼ Lξhμν þ λμτν þ λντμ;

δmμ ¼ Lξmμ þ λμ þ ∂μσ; ð1Þ

whereLξ denotes the Lie derivative along ξμ. The geometric
tensors vμ and hμν are defined by inverting −τμτν þ hμν to
−vμvν þ hμν, with the property that τμhμν ¼ 0 and
vμτμ ¼ −1. The Galilean boost parameters satisfy
vμλμ ¼ 0. The analog of the absolute value of the determi-
nant of the pseudo-Riemannian metric, which for TNC we
denote by e2, is given byminus the determinant of thematrix
−τμτν þ hμν. Three useful tensors that are invariant under
local Galilean boosts (and rotations) are v̂μ ≡ vμ − hμνmν,
h̄μν ≡ hμν − 2τðμmνÞ, and Φ̃≡ −vμmμ þ 1

2
hμνmμmν. We

also record the completeness relation −v̂μτν þ hμλh̄λν ¼ δμν .
We will choose the following affine connection to

perform covariant differentiation [17–20]:

Γ̄λ
μν ≡ −v̂λ∂μτν þ

1

2
hλσð∂μh̄νσ þ ∂νh̄μσ − ∂σh̄μνÞ: ð2Þ

This is a metric compatible connection, i.e., ∇̄μτν ¼ 0 ¼
∇̄μhνρ. Note that this connection is not invariant under the
local U(1) transformation with parameter σ. In TNC
geometry we cannot make the local Galilean boost
and local U(1) symmetries manifest at the same time.
We also note that this connection has torsion because
Γ̄λ
½μν� ¼ −v̂λ∂ ½μτν�. When the clock 1-form τμ obeys

hμρhνσð∂μτν − ∂ντμÞ ¼ 0, we call the torsion twistless
and the resulting geometry is called twistless torsional
Newton-Cartan (TTNC) geometry [5–7]. In this Letter we

will assume throughout that τμ is twistless, implying that τμ
obeys the Frobenius integrability condition τ½μ∂ντρ� ¼ 0 so
that τμ is hypersurface orthogonal. Thus, in this case, the
spacetime allows a foliation in terms of equal-time slices.
A useful property of the connection (2) is Γ̄ρ

ρμ ¼
e−1∂μe − aμ, where we defined the torsion vector aμ ≡
Lv̂τμ and e has been defined above. This implies
ð∇̄μ þ aμÞXμ ¼ e−1∂μðeXμÞ. We define the associated
Riemann tensor as usual via

½∇̄μ; ∇̄ν�Xσ ¼ R̄ρ
μνσXρ − 2Γ̄ρ

½μν�∇̄ρXσ: ð3Þ

Further, we define the Ricci tensor as R̄μν ¼ R̄ρ
μρν. Because

of the presence of torsion, one can show using the Bianchi
identity for R̄½μνσ�ρ that the antisymmetric part of the Ricci
tensor is nonzero and equal to

2R̄½μν� ¼ ðτμaν − τνaμÞ∇̄ρv̂ρ þ v̂ρðτμ∇̄νaρ − τν∇̄μaρÞ: ð4Þ

The above reviewed standard TNC geometry is referred to
as type I TNC geometry below.
Finally, we note that a convenient way to think of type I

TNC geometry is via the process of null uplift [21], which
will be instrumental below in showing that this geometry
cannot correctly describe Newtonian gravity. Any TNC
geometry can be written as a Lorentzian geometry with a
null isometry in one dimension higher. Parametrizing the
null isometry with u we can write the Lorentzian metric
ĝMN as

ĝMNdxMdxN ¼ 2τμdxμðdu −mνdxνÞ þ hμνdxμdxν; ð5Þ

where xM ¼ ðu; xμÞ. The null Killing vector is ∂u. The
inverse metric is ĝuu ¼ 2Φ̃, ĝμu ¼ −v̂μ, and ĝμν ¼ hμν. At
the level of symmetries, the null reduction means that the
Bargmann algebra is a subalgebra of Poincaré in one
dimension higher. Alternatively, it can be obtained by an
Inönü-Wigner contraction of the product of the Poincaré
algebra (in the same dimension) times a U(1).
A critical look at Newton-Cartan gravity.—Type I

Newton-Cartan geometry was initially invented to describe
Newtonian gravity in a coordinate independent manner.
The equations of motion that covariantize the Poisson
equation of Newtonian gravity are

R̄μν ¼ 8πG
d − 2

d − 1
ρτμτν; ∂μτν − ∂ντμ ¼ 0; ð6Þ

where ρ is the mass density. On flat spacetime in Cartesian
coordinates τ ¼ dt and hμνdxμdxν ¼ dxidxi with m ¼
Φdt, this simply reduces to

∂i∂iΦ ¼ 8πG
d − 2

d − 1
ρ: ð7Þ
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Both sides of (6) are formulated in terms of NC objects and
are invariant under all type I NC gauge symmetries for
dτ ¼ 0. Yet, the coupling of mass to the geometry is not
what one would expect from a theory with local Bargmann
U(1) invariance. The gauge field mμ couples to the
conserved mass current Jμ, so any type I invariant action
leads to an equation of the form Rμ ¼ Jμ, where the left-
hand side is a geometrical object formed from the type I
TNC fields obeying the Bianchi identity ∂μðeRμÞ ¼ 0.
Using null uplift (5), the equation Rμ ¼ Jμ reads

Ĝμ
u ¼ 8πGT̂μ

u, where ĜM
N and T̂M

N are the higher dimen-
sional Einstein and energy-momentum tensors. From the
Bianchi identity for ĜM

N , it follows that Ĝμ
u is identically

conserved. Contracting with τμ we see that mass sources
τ ∧ dτ ≠ 0 since Ĝuu ¼ 8πGT̂uu ≡ 8πGρ with Ĝuu ¼
1
4
½hμρhνσð∂μτν − ∂ντμÞð∂ρτσ − ∂στρÞ�2. This conflicts with

Newtonian gravity since in that case the notion of mass is
compatible with dτ ¼ 0; i.e., ρ in Newton’s law is not a
Bargmann mass.
Newtonian gravity is obtained from a nonrelativistic

limit of GR, but we have just shown that this limit cannot be
type I TNC geometry. This begs the question what kind of
geometry one should employ. The answer comes from
studying the large speed of light limit of GR, i.e., the 1=c
expansion of [11,12]. We will show that this leads to a
different notion of Newton-Cartan geometry, which we call
type II Newton-Cartan geometry, and that this allows for an
off shell formulation of Newtonian gravity.
1=c expansion and type II TNC geometry.—In a 1=c

expansion the pseudo-Riemannian metric and its inverse
are expanded as [11]

gμν ¼ −c2τμτν þ h̄μν þ
1

c2
ð2τðμB̂νÞ − h̄μρh̄νσβ̂

ρσÞ þOðc−4Þ;
ð8Þ

gμν ¼ hμν −
1

c2
v̂μv̂ν þ 1

c2
β̂μν þOðc−4Þ; ð9Þ

where we note that the 1-form B̂μ will play no role in what
follows. It is convenient to define Φμν via the relation

β̂μν ¼ hμρhνσΦρσ.
Using the corresponding 1=c expansion for the vielbeins

[22], it follows that the fields τμ and hμν appearing above
transform as in type I TNC geometry [see (1)]. In addition,
the fields mμ and Φμν transform as

δmμ ¼ Lξmμ þ λμ þ ð∂μ − aμÞλþ τμhρνaρζν

δΦμν ¼ LξΦμν − 2λK̄μν þ ∇̄μζν þ ∇̄νζμ; ð10Þ

where we defined λ and ζν through the equation ζμ ¼
−v̂μλþ hμνζν, K̄μν ≡ − 1

2
Lv̂h̄μν is the extrinsic curvature

tensor, and we recall that aμ ≡ Lv̂τμ is the torsion vector.

These important extra symmetries follow from expanding
relativistic diffeomorphism Ξμ ¼ ξμ þ ð1=c2Þζμ þ � � �, so
that ξμ parametrizes nonrelativistic diffeomorphisms and ζμ

the extra symmetries above.
We will refer to the λ transformation in (10) as a torsional

U(1) transformation due to the presence of the torsion
vector aμ. One notices that for dτ ¼ 0 the transformation
of mμ above reduces to the one in (1), since the ζν part
vanishes in that case while the torsional U(1) takes the same
form as the U(1) transformation in (1). However, the gauge
field mμ in type II TNC geometry is quite different from
its type I cousin. In particular, we will show in [22] that in
type II TNC geometry mμ couples to the energy current as
opposed to type I where it couples to the mass current.
Deferring details to [22] we remark that the trans-

formations of the type II TNC geometry introduced above
can be obtained by gauging a novel nonrelativistic algebra
of dimension ðdþ 1Þðdþ 2Þ, spanned by the generators
fH;Pa;Ga; Jabg of the (massless) Galilean algebra
augmented with the set fN; Ta; Ba; Sabg, with nonzero
commutators

½H;Ga� ¼Pa; ½Pa;Gb� ¼Nδab; ½N;Ga� ¼ Ta;

½H;Ba� ¼ Ta; ½Sab;Pc� ¼ 2δc½aTb�; ½Ga;Gb� ¼−Sab;

½Sab;Gc� ¼ 2δc½aBb�; ½Jab;Jcd� ¼ 4δ½a½dJc�b�;

½Jab;Xc� ¼ 2δc½aXb�; ½Jab;Scd� ¼ 4δ½a½dSc�b�; ð11Þ

where Xa ∈ fPa; Ta; Ga; Bag. The first line differs from the
Bargmann algebra because N is not central. Interestingly,
this algebra can be obtained from a contraction of the direct
sum of the Poincaré and Euclidean algebras in dþ 1
dimensions and underlies Newtonian gravity in the same
way that the Poincaré algebra underlies GR.
Off shell Newtonian gravity.—We now construct a

Lagrangian depending on τμ, hμν, mμ, Φμν that is invariant
under the above gauge transformations. The unique two-
derivative result is

L ¼ −
1

16πG
e½v̂μv̂νR̄μν − Φ̃hμνR̄μν

−ΦμνhμρhνσðR̄ρσ − aρaσ − ∇̄ρaσÞ

þ 1

2
Φμνhμν½hρσR̄ρσ − 2e−1∂ρðehρσaσÞ��; ð12Þ

where e is the integration measure and we have omitted a
possible cosmological constant term eΛ. The Lagrangian
is obtained by starting with the (necessary) kinetic term
v̂μv̂νR̄μν and subsequently adding terms such that the entire
expression is invariant under the torsional U(1) trans-
formation as well the ζμ transformation (10). This invari-
ance follows from the Bianchi identities
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0 ¼ e−1∂ρ

�
e

�
hρνv̂μR̄μν −

1

2
v̂ρhμνR̄μν

��

þ hμρhνσK̄ρσR̄μν −
1

2
hρσK̄ρσhμνR̄μν; ð13Þ

0 ¼ hμνhρσ∇̄μR̄νρ −
1

2
hμσhνρ∇̄μR̄νρ; ð14Þ

which can be derived from ∇̄½λR̄κ
μν�σ ¼ 0.

Since we work with off shell TTNC geometries, we need
to add the Lagrange multiplier term LLM ¼ eζμνð∂μτν −∂ντμÞ to the Lagrangian, where ζμν ¼ −ζνμ obeying
τμζ

μν ¼ 0, so that it only imposes τ ∧ dτ ¼ 0 but not
dτ ¼ 0 [23]. If we were to drop the condition τμζ

μν ¼ 0 so
that LLM enforces dτ ¼ 0, the field ζμν would not decouple
from the equations of motion. This is what happens in the
3D Chern-Simons actions for extended Bargmann algebras
[9,10], where ζμν ¼ ϵμνρζρ with ζρ associated with the
central extension of the 3D Bargmann algebra.
We are going to compute the equations of motion by

varying Φ̃, v̂μ, Φμν, and hμν. Let us define

δL ¼ −
e

8πG

�
EΦ̃δΦ̃ − Eμδv̂μ þ

1

2
Eh
μνδhμν þ

1

2
EμνδΦμν

�
;

ð15Þ

where EΦ̃ ¼ − 1
2
hμνR̄μν and

Eμν ¼ −hμρhνσðR̄ρσ − aρaσ − ∇̄ρaσÞ

þ 1

2
hμν½hρσR̄ρσ − 2e−1∂ρðehρσaσÞ�: ð16Þ

The variations with respect to Pρ
μδv̂μ with Pρ

μ the spatial
projector Pρ

μ ≡ δρμ þ v̂ρτμ gives

hρμEμ ¼ −hρμv̂νR̄μν: ð17Þ

The remaining variations are τμδv̂μ and Pα
μP

β
νδhμν. Defining

Eαβ
h ≡ hμαhνβEh

μν, we find

−2v̂μEμ ¼ −2Φ̃EΦ̃ −ΦμνEμν − hμνΦμνe−1∂ρðehρσaσÞ þ hμρhνσΦμνð∇̄ρaσ þ aρaσÞ þ ðhρσK̄ρσÞ2
− hρσhκλK̄ρκK̄σλ þ ∇̄μ½hμρhνσð∇̄ρΦνσ − ∇̄νΦρσÞ�; ð18Þ

Eαβ
h ¼

�
hμαhνβΦμν −

1

2
hαβhμνΦμν

�
½e−1∂ρðehρσaσÞ þ EΦ̃� −

1

2
hαβΦμνEμν þ hμαΦμρEρβ þ hμβΦμρEρα

−
1

2
hρσΦρσEαβ þ Φ̃Eαβ −

1

2
hαβ½ðhμνK̄μνÞ2 − hμρhνσK̄μνK̄ρσ� þ ∇̄ρ½v̂ρhμαhνβK̄μν − v̂ρhαβhμνK̄μν�

þ hμαhνβ∇̄μ∂νΦ̃þ hμαhνβðaμ∂νΦ̃þ aν∂μΦ̃Þ − hαβhμν∇̄μ∂νΦ̃ − 2hαβhμνaμ∂νΦ̃

−
1

2
hαβhμνhρσð∇̄μ þ aμÞð∇̄ρ þ aρÞΦνσ þ hμαhνβhρσð∇̄ρ þ aρÞ

�
∇̄ðμΦνÞσ −

1

2
∇̄σΦμν

�

þ 1

2
hαβhμνhρσð∇̄μ þ aμÞ∇̄νΦρσ −

1

2
hμαhνβhρσ∇̄μ∇̄νΦρσ: ð19Þ

We only need to consider the variation Pα
μP

β
νδhμν because we are only interested in the spatial projection of Φμν. By

taking the trace of Eαβ
h and using v̂μEμ, we find

hμνEh
μν ¼ −ðd − 2Þv̂μEμ þΦμνEμν − ðd − 1Þ

�
v̂μv̂νR̄μν − ð∇̄μ þ aμÞ

�
hμνaν

�
Φ̃þ 1

2
hρσΦρσ

�
− hμνhρσaρΦνσ

��
; ð20Þ

where we used the identity

v̂μv̂νR̄μν ¼ ðhμνK̄μνÞ2 − hμρhνσK̄μνK̄ρσ þ 3hμνaμ∂νΦ̃þ ∇̄μðv̂μhνρK̄νρ þ hμν∂νΦ̃Þ þ 2Φ̃e−1∂μðehμνaνÞ: ð21Þ

Note that for dτ ¼ 0 the field Φμν decouples.
It can be shown that these equations agree with [11],

where they were obtained by expanding the Einstein
equations in 1=c2. However, [11] did not determine the
equations of motion for hαμhβνΦμν, which we obtain by
varying v̂μ and hμν. These equations are essential in order to
obtain a closed system of equations for the general case

dτ ≠ 0. Importantly, we note that our action allows for
geometries with strong gravitational fields and, in particu-
lar, those with τ not closed allow for nonrelativistic
gravitational time dilation.
Given the gravity action with type II TNC gauge

invariance, we need to understand how matter couples to
such a geometry. This will be discussed in [22], but as
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remarked before this coupling will be markedly different
than the known couplings of matter to type I TNC geometry
[18,24–28]. One of the reasons is that, while in type I TNC
geometry mμ couples to the mass current, in type II it
couples to the energy current. This will be further discussed
in [22] by carefully studying the 1=c limit of the worldline
action of a relativistic particle as well as the known
couplings of Poincaré invariant field theories to pseudo-
Riemannian geometry.
Here we will consider only the very special case of a

static particle in order to obtain the Poisson equation from
an action principle. A static point mass with mass density ρ
has a Lagrangian that is simply Lm ¼ αeρ with α ¼
−½ðd − 2Þ=2�. Taking the trace of Eμν gives h̄μνEμνþ
ðd − 2ÞEΦ̃ ¼ −ðd − 1Þe−1∂ρðehρσaσÞ. Varying Lþ Lm

tells us that the left-hand side vanishes and hence
that ∂μðehμνaνÞ ¼ 0. Since τ ∧ dτ ¼ 0 we have that
hμρhνσð∂ρaσ − ∂σaρÞ ¼ 0, so that hμνaν ¼ hμν∂νF for
some function F. Hence ∂μðehμνaνÞ ¼ 0 states that F is
a harmonic function on the d-dimensional Riemannian
geometry of the hypersurface to which τ is orthogonal.
Regularity requires F to be constant and hence that
dτ ¼ 0, as desired in Newtonian gravity which has abso-
lute time. What survives from (20) is then the equation
ðd−1Þv̂μv̂νR̄μν¼−ðd−2Þv̂μEμ−hμνEh

μν. Then, taking into
account the matter contribution to Eμ and Eh

μν in this equ-
ation, for which we use the variation δLm ¼ αeρðτμδv̂μ−
1
2
hμνδhμνÞ, it follows that the equations of motion of

Lþ Lm with dτ ¼ 0 are nothing else but Newton’s law (6).
Discussion.—Among the numerous avenues that one

may pursue following our action and corresponding novel
geometry, we mention a few. It would be interesting to
(i) examine if there exists a geometric construction that
gives type II TNC geometry from some Lorentzian starting
point, just like type I follows from null reduction of a
Lorentzian metric, (ii) perform a Hamiltonian analysis
along with determining the asymptotic symmetries and
examining the solution space of the theory, and (iii) work
out how particles, strings, and branes probe type II TNC
geometry and see if the equations of motion of the non-
relativistic gravity action can be related to consistency
conditions of some type of string theory (see [29–31] for
nonrelativistic strings in the context of type I TNC
geometry). Finally, there are undoubtedly also exciting
applications in the realm of the AdS/CFT correspondence
and generalizations thereof.
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