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We present two quantum algorithms based on evolution randomization, a simple variant of adiabatic
quantum computing, to prepare a quantum state jxi that is proportional to the solution of the system of

linear equations Ax⃗ ¼ b⃗. The time complexities of our algorithms are O(κ2 logðκÞ=ϵ) and O(κ logðκÞ=ϵ),
where κ is the condition number of A and ϵ is the precision. Both algorithms are constructed using families
of Hamiltonians that are linear combinations of products of A, the projector onto the initial state jbi, and
single-qubit Pauli operators. The algorithms are conceptually simple and easy to implement. They are not
obtained from equivalences between the gate model and adiabatic quantum computing. They do not use
phase estimation or variable-time amplitude amplification, and do not require large ancillary systems.
We discuss a gate-based implementation via Hamiltonian simulation and prove that our second algorithm
is almost optimal in terms of κ. Like previous methods, our techniques yield an exponential quantum speed-
up under some assumptions. Our results emphasize the role of Hamiltonian-based models of quantum
computing for the discovery of important algorithms.
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Introduction.—Recently, there has been significant inter-
est in quantum algorithms to solve various linear algebra
problems [1–5], as quantum computers can implement
certain linear transformations more efficiently than their
classical counterparts. Such algorithms may find applica-
tions in a wide range of topics, including machine learning
[6–8], graph problems [9], solving differential equations
[10], and physics problems [11,12]. A main example is
the algorithm of Harrow, Hassidim, and Lloyd (HHL)
of Ref. [1] for the so-called quantum linear systems
problem (QLSP), where the goal is to prepare a quantum
state jxi that is proportional to the solution of a system
of linear equations Ax⃗ ¼ b⃗. If the N × N matrix A and N-
dimensional vector b⃗ are sparse, and for constant precision,
the complexity of the algorithm in Ref. [1] is polynomial in
logN and κ, where κ is the condition number of A. In
contrast, classical algorithms to invert matrices are of
complexity polynomial in N, suggesting that quantum
computers would be able to solve certain problems related
to systems of linear equations exponentially faster than
classical computers. Improvements of the HHL algorithm
can be found in Refs. [3–5].
The referenced algorithms are described in the standard

gate-based model of quantum computing, where quantum
states are prepared by applying a sequence of elementary
(e.g., two-qubit) gates to some initial state. However,
Hamiltonian-based alternatives to the gate-based model
exist, such as adiabatic quantum computing (AQC) [13].

One advantage of considering these other alternatives is
that new and simple quantum algorithms can be found,
even if such algorithms will ultimately be implemented
using a different but equivalent model.
In AQC, for example, the computation is performed by

smoothly changing the parameters of a Hamiltonian that
evolves a quantum system. The adiabatic theorem asserts
that if the continuously related eigenstates remain non-
degenerate and the Hamiltonians change sufficiently
slowly, then the evolved state is sufficiently close to the
eigenstate of the final Hamiltonian [14]. Such an eigenstate
encodes information about the solution to a problem; in our
case the final eigenstate would be jxi (or jϕi ⊗ jxi if
ancillas are used). A closely related method is the ran-
domization method (RM) described in Ref. [15]. Both AQC
and RM are examples of eigenpath traversal [16].
Nevertheless, an advantage of the RM with respect to
AQC is that better convergence guarantees can sometimes
be obtained, as shown in Refs. [17,18].
In this Letter, we develop two simple quantum algo-

rithms that solve the QLSP based on the RM. To this end,
we construct families of Hamiltonians whose continuously
related eigenstates connect jbi, the quantum state propor-
tional to b⃗, with jxi. The average evolution times of our
algorithms, i.e., the time complexities, are nearly order κ2

and κ, respectively. Here, κ is the condition number of A.
Additionally, the time complexities of both algorithms are
linear in 1=ϵ, where ϵ is a precision parameter. In contrast to
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previous approaches, our algorithms do not use any form of
phase estimation, amplitude amplification, or function
approximation, thus reducing the number of ancillary
qubits significantly.
Our first quantum algorithm solves the QLSP by pre-

paring the lowest-energy states of a family of Hamiltonians,
whereas our second algorithm achieves this by preparing
energy states that lie exactly at the middle of the spectrum,
i.e., excited states. Our second algorithm is noteworthy in
that it is almost optimal, having time complexity almost
linear in κ.
The Hamiltonians involved in our algorithms are easily

described in terms of the inputs of the problem. They may
not correspond to a physical model and actual implemen-
tations of our algorithms on analog quantum computing
devices may be impractical. However, the quantum algo-
rithms could still be efficiently implemented in the gate-
based model by using the Hamiltonian simulation results of
Refs. [19–21]. This will require oracle access to the matrix
A as well as a procedure to prepare the state jbi. A resulting
gate-model algorithm for the QLSP following this pro-
cedure will be nearly optimal according to Ref. [1]. That is,
like Refs. [3,4], the query complexity is almost linear in κ, a
quadratic improvement over that of the HHL algorithm. We
give more specifics below.
Quantum linear systems problem.—The QLSP in

Refs. [1,3,4] is stated as follows. We are given an N × N
Hermitian matrix A and a vector b⃗ ¼ ðb1;…; bNÞT, with
N ¼ 2n. The goal is to prepare an ϵ approximation of a
quantum state,

jxi ≔
P

N
j¼1 xjjjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
j¼1 jxjj2

q ¼ ð1=AÞjbi
kð1=AÞjbik ; ð1Þ

where x⃗ ¼ ðx1;…; xNÞT is the solution to the linear system
Ax⃗ ¼ b⃗, jbi ∝ P

N
j¼1 bjjji, and 0 < ϵ < 1 is a precision

parameter. We assume that A is invertible, having condition
number κ < ∞, and kAk ≤ 1. The approximated state jx̃i
satisfies kjx̃i − jxik ≤ ϵ. Here, we consider a slightly
modified version of this problem where the goal is to
prepare a mixed state ρx such that the trace distance satisfies

1

2
Trjρx − jxihxjj ≤ ϵ: ð2Þ

Note that thismodified version is adequate since the ultimate
purpose of the QLSP is obtaining expectation values of
observables. Thus, both jx̃i and ρx will provide same-order
approximations for such calculations.
Algorithm evolving on ground states.—We first define

the family of Hamiltonians:

HðsÞ ≔ AðsÞP⊥̄
b
AðsÞ: ð3Þ

Here, AðsÞ≔ð1−sÞZ⊗1þsX⊗A, jb̄i≔jþ;bi, P⊥̄
b
≔ 1−

jb̄ihb̄j, and s ∈ ½0; 1� is a parameter. X and Z are single-
qubit Pauli operators. These Hamiltonians act on a Hilbert
space of dimension 2N, i.e., the space of A plus one ancilla
qubit. The reason for using an ancilla is to guarantee that
AðsÞ is invertible for all s. We introduce the family of states

jxðsÞi ≔ 1=½AðsÞ�jb̄i
k1=½AðsÞ�jb̄ik ; ð4Þ

which satisfy HðsÞjxðsÞi ¼ 0. In Supplemental Material
[22] we show that jxðsÞi is the unique ground state of HðsÞ
and the energy gap satisfies ΔðsÞ ≥ Δ�ðsÞ ≔ ð1 − sÞ2þ
ðs=κÞ2. As s is increased from 0 to 1, the ground state
continuously changes from jxð0Þi ¼ j−; bi to jxð1Þi ¼
jþ; xi. Exact preparation of jxð1Þi implies exact prepara-
tion of the target state jxi by discarding the ancillary qubit.
In the case A > 0, we can opt for the simpler choice

AðsÞ ≔ ð1 − sÞ1þ sA, and still have AðsÞ nonsingular for
all s. Then, jxðsÞi ∝ AðsÞ−1jbi is the unique ground state of
HðsÞ. The following analysis is for general A.
Randomization method.—The details of the RM as well

as its complexity analysis can be found in Ref. [15]. Here,
we mainly study and describe how to use the RM to solve
the QLSP. Roughly, the method can be viewed as a version
of AQC, where the parameter s is changed discretely rather
than continuously, and the Hamiltonian evolution is for a
random time. This process effectively simulates an approxi-
mate projective measurement of the desired ground state
(or any other eigenstate). It then allows us to make
transformations within the ground states (eigenstates) of
the Hamiltonians. The time complexity of the RM in
general is O(L2=ðϵΔÞ), where L is the so-called path
length (which we define later) andΔ is the minimum gap of
the Hamiltonians. We observe that the dependence on Δ is
optimal [18], while general bounds for AQC provide a
worse time complexity of Oð1=Δ3Þ [23]. This observation
is key to achieve our results. Then, obtaining the actual time
complexity for the QLSP requires studying the properties
of the Hamiltonians HðsÞ and eigenstates jxðsÞi. With this
information, we can find discrete values of s as well as
values for the evolution times needed to implement the RM.
The full complexity analysis for the QLSP is given in

Supplemental Material [22]. According to Refs. [15,16,18],
to obtain the discrete values of s, it is convenient to work
with a “natural” parametrization sðvÞ. This is defined so
that the norm of the rate of change of the eigenstate with
respect to v can be bounded by a constant. We find that a
natural parametrization for this case is

sðvÞ ≔ evð
ffiffiffiffiffiffiffiffi
1þκ2

p
=
ffiffi
2

p
κÞ þ 2κ2 − κ2e−vð

ffiffiffiffiffiffiffiffi
1þκ2

p
=
ffiffi
2

p
κÞ

2ð1þ κ2Þ : ð5Þ

Here, va ≤ v ≤ vb, with
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va ≔
ffiffiffi
2

p
κffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ2
p logðκ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
− κ2Þ; ð6Þ

vb ≔
ffiffiffi
2

p
κffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ2
p logð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
þ 1Þ: ð7Þ

The discrete values sj ¼ sðvjÞ are obtained from discrete
values of v, which are evenly distributed in q points
as va < v1 < v2 < � � � < vq ¼ vb. Here, vj ¼ va þ jδ
(j ¼ 1;…; q) and s0 ¼ sðvaÞ ¼ 0, sq ¼ sðvbÞ ¼ 1. The
number of steps of the RM is q ¼ Θ( log2ðκÞ=ϵ), and
δ ¼ ðvb − vaÞ=q. The choice of q implies

1 − jhxðsjÞjxðsjþ1Þij2 ¼ Oðϵ=qÞ: ð8Þ

That is, a sequence of q projective measurements of jxðsjÞi,
starting from jxð0Þi, will produce jxð1Þi with probability
1 −OðϵÞ. These measurements are simulated by evolution
randomization.
Our algorithm is as follows. At each step j ¼ 1;…; q, we

evolve with the Hamiltonian HðsjÞ for a random time tj.
The evolution time can be sampled from the uniform
distribution tj ∈ ½0; 2π=Δ�ðsjÞ� [15,18] and satisfies
htji ¼ π=½Δ�ðsjÞ�. The time complexity of this algorithm
is T ≔

Pq
j¼1htji, and in Supplemental Material [22] we

show

T ¼ O(κ2 logðκÞ=ϵ): ð9Þ

Note that, in each run, the overall evolution time is always
bounded by 2T.
Our first algorithm then uses the RM to prepare a mixed

state ρx that satisfies Eq. (2), after discarding the ancilla.
The time complexity is almost quadratic in κ. The pseu-
docode for the algorithm is shown here.

Spectral gap amplification.—One way to improve the
time complexity of the first algorithm is by considering
other families of Hamiltonians where the relevant spectral
gap is larger than that of HðsÞ. This idea was considered in
Ref. [24] and resulted in various polynomial quantum
speed-ups for quantum state preparation. A quadratic
spectral gap amplification is indeed possible when the
Hamiltonians satisfy a so-called frustration-free property.
Very roughly, a possible Hamiltonian with an amplified gap

can be interpreted as the square root of the frustration-free
Hamiltonian. A zero eigenvalue remains zero and an
eigenvalue λ > 0 is transformed into eigenvalues � ffiffiffi

λ
p

.
(

ffiffiffi
λ

p
≫ λ if λ ≪ 1.) To avoid additional complexity over-

heads, the Hamiltonians with an amplified gap must satisfy
certain constrains related to the difficulty of their simu-
lation. See Ref. [24] for details.
Motivated by these results, we now consider another

family of Hamiltonians for solving the QLSP using the
RM. This family is given by

H0ðsÞ ≔ σþ ⊗ AðsÞP⊥̄
b
þ σ− ⊗ P⊥̄

b
AðsÞ; ð10Þ

where σ� ¼ ðX � iYÞ=2 are single-qubit (raising and low-
ering) operators, and s ∈ ½0; 1�. We note thatH0ðsÞ acts on a
Hilbert space of dimension 4N. Then

½H0ðsÞ�2 ¼
�HðsÞ 0

0 P⊥̄
b
½AðsÞ�2P⊥̄

b

�
; ð11Þ

where each block of the matrix is of dimension 2N × 2N.
Using BðsÞ ≔ AðsÞP⊥̄

b
, the blocks on the diagonal of

Eq. (11) can be written as BðsÞ†BðsÞ and BðsÞBðsÞ†, and
thus have the same spectrum. Consequently, the eigenvalues
of H0ðsÞ are f0; 0;� ffiffiffiffiffiffiffiffiffiffi

γ1ðsÞ
p

;…;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2N−1ðsÞ

p g, where
γjðsÞ > 0 are the nonzero eigenvalues of HðsÞ. The sub-
space of H0ðsÞ of eigenvalue zero is spanned by
fj0i ⊗ jxðsÞi; j1i ⊗ jb̄ig.
In contrast to the first algorithm that aimed at preparing

the ground state of HðsÞ, we now aim at preparing one of
the two eigenstates of zero eigenvalue of H0ðsÞ that lies
exactly at the middle of the spectrum. Nevertheless, the RM
can be used to prepare any eigenstate as long as it is
separated by a nonzero spectral gap from the other
eigenstates. One may wonder if the double degeneracy
is a problem for this case. The answer is negative as the
Hamiltonian does not allow for transitions between the two
eigenstates; that is, h0j ⊗ hxðsÞjH0ðs0Þj1i ⊗ jb̄i ¼ 0. If we
initialize our quantum computer in j0i ⊗ jxð0Þi, a
sequence of perfect projective measurements of the eigen-
states of H0ðsÞ at sufficiently close points will allow us
to prepare j0i ⊗ jxð1Þi with sufficiently high probability.
The relevant spectral gap is now bounded by

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ�ðsÞp

> 0.
The eigenstate j0i ⊗ jxðsÞi has similar properties as

jxðsÞi: the path length and norm of the rate of change are
the same. Then, our second algorithm can be constructed
by using the same discretization points sj that were used for
the first algorithm. At each step, we now need to evolve
with the HamiltonianH0ðsjÞ for a random time tj. This time
can be sampled from the uniform distribution tj ∈ ½0; 2π=ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ�ðsjÞ

p
�. The time complexity of this algorithm is T ≔Pq

j¼1htji and, in Supplemental Material [22], we show

T ¼ O(κ logðκÞ=ϵ): ð12Þ

Algorithm 1

Given condition number κ and precision ϵ:
—Compute va and vb. Set q ¼ Θ( log2ðκÞ=ϵ), δ ¼ ðvb − vaÞ=q
—For j ¼ 1;…; q, let vj ¼ va þ jδ, sj ¼ sðvjÞ, and tj be
sampled from the uniform distribution ½0; 2π=Δ�ðsjÞ�

—Apply e−it
qHðsqÞ � � � e−it1Hðs1Þ to jb̄i, discard the ancilla
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After discarding the two ancilla qubits, the final state is
ρx and satisfies Eq. (2). The time complexity of our second
algorithm is then almost linear in κ. The pseudocode for
this algorithm follows from Algorithm 1 by replacing
Δ�ðsjÞ with

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ�ðsjÞ

p
, HðsÞ with H0ðsÞ, and jb̄i with

j0i ⊗ jb̄i, in the second and third lines.
Simulation results.—We tested the validity of our quan-

tum algorithms by performing numerical simulations. For
this purpose, we randomly generated Hermitian matrices A
of dimension N ¼ 16 that are 4-sparse and N ¼ 32 that are
5-sparse, both satisfying kAk ¼ 1. The generated matrices
result in a range of values for the condition number κ. We
postselected matrices for which κ ≈ 10 and κ ≈ 50 (to
within absolute error 10−3), for N ¼ 16 and N ¼ 32,
respectively. Similarly, we randomly generated 4-sparse
and 5-sparse vectors for b⃗. The parameters sj and tj were
chosen according to the previous discussion and depend on
κ and ϵ (or q). In each execution, we prepare a pure
quantum state that is not guaranteed to be ϵ-close to the
pure eigenstate of the final Hamiltonian. However, the
expected error of the prepared pure states from many
repeated executions of the algorithms is indeed bounded
by ϵ.
We ran simulations for which the number of repetitions

of our algorithms were nrep ¼ 50 and nrep ¼ 200, respec-
tively. For each case, we first construct a finite-sampling
density matrix ð1=nrepÞ

Pnrep
i¼1 jψ iihψ ij. Here, jψ ii is the

pure state output at the i-th repetition. Tracing out the
ancilla qubits, we get a density matrix ρ̃x that describes the
state of the system only. Note that ρ̃x is, in general, slightly
different from ρx of Eq. (2). However, ρ̃x → ρx in the limit
of nrep → ∞. The error computed in our numerical simu-
lations is then the trace distance between ρ̃x and jxihxj.
In Fig. 1, we show the dependence of the inverse of the

error on the number of steps q. While the results are for two
particular matrices Awith κ ≈ 10 and κ ≈ 50, other matrices
show similar results. We observe that the inverse of the
error for the two quantum algorithms, denoted by ϵQ and
ϵL, respectively, scales almost linearly with q. The
dispersion around the linear fit is smaller for larger nrep.
The results are then in accordance with our theoretical
analysis.
Gate-based implementations.—Our algorithms are based

on Hamiltonian evolutions and can be implemented on a
gate-based quantum computer using a Hamiltonian simu-
lation method. We focus on the method of Ref. [20], which
implements the truncated Taylor series of the evolution
operator. It requires the Hamiltonian to be given as a linear
combination

P
lαlVl, where the Vl are unitaries that are

easy to apply and αl > 0. The Vl are applied ÕðτÞ times,
where τ is the product of the evolution time and

P
lαl. The

Õ notation hides logarithmic factors in τ.
Our second algorithm applies the evolution under H0ðsjÞ

for time tj. Themain challenge is then to find a decomposition

of theHamiltonian in termsof unitaries. For technical reasons,
we consider another Hamiltonian H̃0ðsjÞ, whose evolution
operatormimics that ofH0ðsjÞ. ThisHamiltonian is discussed
in Supplemental Material [22]. It turns out that H̃0ðsÞ ¼
½ðdþ 1Þ=16�P32

l¼1 VlðsÞ, where VlðsÞ are unitaries. As in
previous approaches for the QLSP [4], we assume access to a
quantum oracle OA for the matrix A. This oracle outputs the
nonzero matrix elements and their indices, for any row of A.
We also assume access to a (controlled) unitary Ub that
prepares the state jbi and the (controlled) U†

b, as in
Refs. [1,3,4]. Each unitary VlðsÞ can be applied using, at
most, a constant number ofOA and (controlled) Ub and U

†
b.

In addition, it may require OðnÞ two-qubit gates; see
Supplemental Material [22].
In our construction, we have τ ¼ OðtjdÞ if the evolution

time is tj. Since our algorithm implements evolutions with
q Hamiltonians, the total number of uses of OA and
(controlled) Ub and U†

b, or query complexity, is then
ÕðTdÞ, where T is the total evolution time. The number
of additional two-qubit gates is a multiplicative factor of
order n away from the query complexity.
Substituting T from Eq. (12) gives the query complexity

of our approach as Õðκd=ϵÞ. In Ref. [1], it was shown that
quantum algorithms for the QLSP must have a query
complexity that is, at least, linear in κ. Then, the gate-
based implementation following Ref. [20] is almost opti-
mal. Note that the query complexity of evolving with H̃0ðsÞ
is of the same order as that of evolving directly with A,
which is needed for the HHL algorithm.
Discussion.—We presented simple quantum algorithms

for solving the QLSP that were motivated by AQC and not

FIG. 1. The inverse of the error for the two quantum algorithms
as a function of q, the number of steps in the RM. Subscript Q
refers to the quantum algorithm with complexity that is almost
quadratic in κ and L to the quantum algorithm with complexity
almost linear in κ. nrep is the number of repetitions of the
algorithm. The results are for two randomly generated matrices A
with N ¼ 16, κ ≈ 10, and N ¼ 32, κ ≈ 50.
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the standard gate-based model. A nice feature about AQC
and related models, such as the RM or general eigenpath
traversal methods [16], is that the time complexity is
typically dominated by a single quantity, i.e., the inverse
of the minimum spectral gap of the Hamiltonians. Then, the
root of the quantum speed-up is clearer in this case than in
the gate-based model, allowing for algorithmic improve-
ments by considering different Hamiltonians with larger
spectral gaps. Another nice feature is that some problems
are naturally reduced to preparing the eigenstate of a
Hamiltonian, and eigenpath traversal methods are useful
in that context. We showed that this is the case for the
QLSP. Our results emphasize the importance of considering
models of quantum computing, which go beyond the gate-
based model, for discovering novel quantum algorithms;
see Ref. [25] for another example.
The further significance of our results is as follows.

Previous algorithms for the QLSP [1,3,4] use three main
subroutines: (i) Hamiltonian simulation, (ii) phase estima-
tion or function approximation, and (iii) some form of
amplitude amplification. The method of “variable-time
amplitude amplification” is used in Refs. [3,4] to achieve
near-optimal complexity in terms of κ. That method alone
requiresΩ( logð1=ϵÞ logðκ=ϵÞ=ϵ2) andΩ( logðκÞ logðκ=ϵÞ)
ancillary qubits, respectively, which become excessively
large for large κ. In contrast, our algorithms use only
Hamiltonian simulation (which has the same query com-
plexity as in previous methods) thereby reducing the
number of ancillary qubits significantly. Our result addi-
tionally implies a significant reduction in the number of
conditional operations to solve the QLSP, making our
algorithms more attractive for implementations on quantum
computers of smaller size. To this point, our algorithm has
already been used in Ref. [26] to solve an eight-dimen-
sional linear system on a 4-qubit NMR device, the largest
dimension up to date.
The time complexity of our methods is linear in 1=ϵ. This

complexity can be improved to polylogarithmic in 1=ϵ
using the fast methods for eigenpath traversal of Ref. [16].
These methods will provide a different way of obtaining an
exponential improvement in terms of precision with respect
to the HHL algorithm, as in Ref. [4]. They, however, require
repeated uses of phase estimation and thus many additional
ancillary qubits.
Finally, it would be interesting to study if our results can

also impact classical methods for solving systems of linear
equations.
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