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We show that genuine multipartite entanglement of all multipartite pure states in arbitrary finite
dimension can be detected in a device-independent way by employing bipartite Bell inequalities on states
that are deterministically generated from the initial state via local operations. This leads to an efficient
scheme for large classes of multipartite states that are relevant in quantum computation or condensed-
matter physics, including cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT)
model. For cluster states the detection of genuine multipartite entanglement involves only measurements on
a constant number of systems with an overhead that scales linearly with the system size, while for the
AKLT model the overhead is polynomial. In all cases our approach shows some robustness against
experimental imperfections.
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Introduction.—Entanglement is an exclusive feature of
quantum physics. As such it is believed to be the key
ingredient in various quantum information processing tasks,
like, e.g., quantum computation, quantum metrology and,
to some extent, quantum key distribution. Entanglement is a
direct consequence of the fact that quantum states are
modeled as operators on the tensor product of the Hilbert
spaces for each system. From this mathematical perspective
the question of entanglement detection has been solved, most
notably by the approach based on entanglementwitnesses [1].
However, from a more physical perspective such a view is

not fully satisfactory, as in order to be applied to an experi-
ment it requires to assume a given dimension for the Hilbert
space of each system and an exact quantum description of
the measurement devices. Yet, it is hard to characterize a
measurement device exactly, and, moreover, a physical
system typically has access to more levels and degrees of
freedom than one uses to describe its state. Hence neither of
the assumptions can be fully verified in practice.
The most radical way to overcome these problems is

offered by device-independent methods, which allow one to
detect entanglement solely based on the Bell-like correla-
tions of measurement outcomes collected in the experiment.
In thebipartite casemany results of fundamental interest have
been obtained [2–6]. In particular, it is known that all pure
entangled states violate some Bell inequality, meaning that
the entanglement of any pure state can be detected in a
device-independent way, a result sometimes referred to as
the Gisin theorem [2,7]. Less is known, however, for the
multipartite case, in particular when it comes to genuine
multipartite device-independent entanglement. On one hand,
extensions of Gisin’s theorem to the multipartite case exist,
but focus on the simplest form of entanglement instead
of genuine multipartite entanglement [8–11]. More specific

results, on the other hand, are only known for a few states
[12–23]. This has to do with the difficulty to obtain
multipartite Bell inequalities suited to specific states: typi-
cally, the starting point of the analysis is a fixed set of known
Bell inequalities rather than the states themselves. In addi-
tion, multipartite Bell inequalities such as the Svetlichny
inequality are inefficient to test experimentally, as they
require an exponentially increasing number of measurement
settings.
Here we circumvent these difficulties by introducing a

scheme that allows one to detect genuine multipartite
entanglement by testing bipartite Bell inequalities on states
that are generated deterministically from the initial state
via local operations and classical communication (LOCC).
A similar approach was used in Ref. [24] to detect genuine
multipartite nonlocality. This result, however, required
testing bipartite Bell inequalities between all possible pairs
of parties, hence being impractical for a large number of
parties. More recently, the combined maximal violation of
several bipartite Bell inequalities was used to self-test some
families of multipartite states in Ref. [25]. Here, we derive a
multipartite Bell inequality as the combination of several
bipartite inequalities obtained for a covering set of pairs of
parties, and show that a sufficiently large violation of this
inequality allows one to certify genuine multipartite entan-
glement in a device-independent way.
Our approach is not limited to a specific family of states

but works for all pure states. It thus answers an important
open question raised in, e.g., Ref. [20] and generalizes
Gisin’s theorem to genuine multipartite entanglement: the
genuine multipartite entanglement of a pure state can
always be detected in a device-independent way.
Interestingly, the result obtained with this method

comes with some built-in robustness against noise and
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imperfections: genuine multipartite entanglement is detected
for mixed states that are sufficiently close to a pure genuinely
multipartite entangled state. What is more, since our method
does not involve all possible pairs of parties, we obtain a
scheme that is experimentally efficient for large classes of
interesting states, including all (weighted) graph states with
constant degree [26–29] and ground states of 1D spinmodels
such as the AKLT model [30]. That is, only a constant
(logarithmically growing) number of parties needs to be
measured, and the overhead in terms ofmeasurement settings
is only linear (polynomial) in the system sizeN, respectively,
as opposed to previous schemes that scale exponentially
with N.
One direct consequence of our result is that pure states

with arbitrary entanglement depthM can be detected device
independently. Indeed, in any such state it is possible to trace
out N −M parties such that the remaining M parties are
genuinely multipartite entangled. Our result then guarantees
that it is possible to detect the genuine M-partite entangle-
ment within these parties in a device-independent way.
Statement of the main results.—Let N ∈ N denote the

number of parties, V ¼ f1;…; Ng, Ek ¼ fik; jkg with ik,
jk ∈ V be pairs of parties and E ¼ fE1;…; EKg their
union. We define a graph G ¼ ðV; EÞ by associating the
parties with vertices and the pairs Ek with edges. We say
that E is a covering set of pairs for the N-partite system if
the corresponding graph G is connected.
The main result of this Letter is the following:
Theorem 1—Let jψi be a state in the Hilbert space

⊗N
i¼1 C

di , where di ∈ N for all i ∈ f1;…; Ng. Assume that
there exists a covering set such that for each pair in it there
exist local operations and classical communication such
that one can produce an entangled pure state between the
two parties in all branches of the LOCC protocol. Then one
can show genuine multipartite entanglement between all N
parties in a device-independent way.
Sketch of the proof: The idea behind the proof is the

following. One constructs a Bell expression by considering
the sum of all bipartite Bell expressions for the pairs of
parties appearing in the covering set E and all branches of
the LOCC protocol (that all result in a pure entangled state
of the chosen pair Ek). The bipartite Bell inequalities are
chosen to reach the quantum bound β� for each of the
states, which is in fact possible due to a recent result [4].
One then shows that the quantum state achieves a value for
the multipartite Bell expression which is incompatible with
any biseparable quantum state

ϱBS ¼
X
λ

X
g1∩g2¼∅

g1∪g2¼f1;…;Ng

pðλÞρg1ðλÞ ⊗ ρg2ðλÞ ð1Þ

of arbitrary local dimensions. Here the sum over g1 and g2
covers all possible splittings of the N parties in two groups,
ρg1 are ρg2 are arbitrary joint quantum states of the parties
belonging to the corresponding group, and λ is the hidden
variable.

For each pair of parties and each component of the
biseparable state expansion appearing in Eq. (1) there are
two possibilities regarding the expectation value of the
bipartite Bell expressions in the multipartite Bell inequality.
Either the two parties appearing in the bipartite inequality
belong to samegroup g1 or g2, inwhich case theymay always
achieve the maximal value of the Bell expression β�. Or they
belong to different groups g1 and g2, in which case they end
up in a separable state in each branch of the LOCC protocol
and can at most contribute a value corresponding the local
bound βL < β�. Since E is a covering set of pairs, for each
grouping g1jg2 in the biseparable state expansion of Eq. (1)
there will be at least one term in the Bell expression,
corresponding to some pair Ek, whose value is limited to
βL < β�. Hence, the expected value of the overall Bell
expression on a biseparable state ρBS is also strictly smaller
than β�. For a detailed proof see Ref. [31].
In fact, in the ideal case, where the observed violation of

the constructed Bell expression is maximal β�, we show that
it is incompatible with any quantum state ð1 − εBSÞϱQ þ
εBSϱBS that has a nonzero biseparable weight εBS, i.e., with
any mixture of a genuinely multipartite entangled state and a
biseparable state with arbitrarily small nonzero weight. We
will also use this property to show the robustness our result
later in the Letter.
Theorem 2.—All genuine multipartite entangled pure

states fulfill the assumption (namely, that there exists a
covering set such that for each pair in it there exist local
operations and classical communication such that one can
produce an entangled pure state between the two parties in
all branches of the LOCC protocol) from Theorem 1.
Sketch of the proof: One can show that almost any

measurement brings a genuinely multipartite entangled
N-partite state jΨi to d1 postmeasurement (N − 1)-partite
genuinely multipartite entangled states jΨki, where d1 is
the local Hilbert space dimension. This can be iterated until
one arrives at a bipartite state. The set of measurements
for which it does not work is of measure zero in each step.
This guarantees that there are measurements on N − 2
parties such that one obtains an entangled bipartite state in
all branches. For a detailed proof see Ref. [31].
While this works for all pure states, in general the

protocol is not efficient. From the proof of Theorem 2 one
sees that up to N − 2 parties need to carry out measure-
ments with at least two outcomes each. This gives rise to
exponentially many branches in which one needs to test a
bipartite Bell inequality. In the general case one can choose
a covering set with N − 1 pairs. In the worst case for each
pair the other N − 2 parties perform measurements with d
outcomes (where for simplicity we assume here that all
parties have the same local Hilbert space dimension d). For
each of the dN−2 possible outcomes the pair has to perform
4 measurements in the case of qubits (d ¼ 2) [32], and 8 in
the case of qudits [4]. Thus in the worst case, the overall
effort scales as 4ðN − 1Þ2N−2 for qubits and 8ðN − 1ÞdN−2
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for qudits. The (worst case) number of settings for each
party is given by 2N þ 1 for qubits and 7dN−2 þ 1 for qudits.
However, there are families of states for which only a

limited number of parties are involved in the LOCC
protocol for each pair, and thus the protocol is efficient.
This is described in more detail in the next section.
The results are illustrated for GHZ states in Ref. [31] but

they are very general and widely applicable. We now
illustrate their usefulness with some examples of classes of
states for which one can (efficiently) show genuine multi-
partite entanglement in a device-independent way.
Connected, generalized and weighted graph states.—

This family of states plays an important role in quantum
information, in particular in the context of quantum error
correction, measurement-based quantum computation, and
quantum networks. It has first been defined for qubits
[26–28] and later been generalized to higher local dimen-
sions [33,34]. The toric code and its generalizations [35]
also belong to this family. For qubits, weighted graph states
[29] can be defined by jGi ¼ Q

fi;jg∈EUijjþi⊗N Here,
Uij ¼ diagð1; 1; 1; eiϕijÞ in the computational basis, jþi
is theþ1 eigenstate of the Pauli X operator and V and E are
sets of vertices and edges as above. If G ¼ ðV; EÞ is
connected, then the (weighted) graph state jGi is said to
be connected. For a discussion of the case of local
dimension d > 2 see Refs. [33,34].
It is easy to see that these states fulfill the requirements

from Theorem 1. The set E itself is a covering set of pairs
and any pair in it can be isolated via measurements of all
qubits in the neighborhood in the computational basis
[26–28], since the gate Uij commutes with the measure-
ment in the Z basis. The efficiency of the protocol depends
on the number of outcomes for the measurements of the
qubits in the neighborhood of each pair. The number of
neighbors is specified by the degree degðGÞ of the graph,
and is at most 2 · degðGÞ. For all measurement outcomes,
one obtains a state that is equivalent up to local Pauli
corrections to Uijjþi⊗2. The covering set can always be
chosen to contain at most N pairs. This can be achieved by
first choosing one vertex and adding all edges connecting
this vertex to the set E0. One then continues this step for all
neighbors of this vertex, but adds only those edges that
connect vertices which were not already connected in the
previous round. The size of the neighborhood, i.e., the
number of vertices adjacent to a pair, enters exponentially
in the total number of operators which need to be measured.
This is because one has to take all measurement outcomes
into account. For qubit graph states one has to optimize
over all possible covering sets and over all local unitary
(LU) equivalent states for each pair individually. The
concept of local complementation can substantially change
the degree of a graph; e.g., for a binary tree graph a
sequence of local complementations [27,28] can change
the degree from 3 to N − 1 and vice versa. In particular, as
long as the maximal degree of the graph grows at most

logarithmically with the number of vertices N the protocol
is efficient. For constant degree one indeed obtains a linear
scaling, as there are only linearly many terms in the Bell
inequality, and each has support on a constant number of
parties only. This holds, e.g., for prominent graphs states
defined on square and triangular lattices, which are also
universal resources for measurement-based quantum com-
putation [28,36].
Affleck-Kennedy-Lieb-Tasaki model.—The AKLT model

[30] is a generalization of the one-dimensional (quantum)
Heisenberg spin model, with Hamiltonian H ¼ P

jSðjÞ ·
Sðjþ1Þ þ 1

3
ðSðjÞ · Sðjþ1ÞÞ2 where Sj is the spin-1 operator

acting on system j. The model is exactly solvable and can
be viewed as a prototype of a matrix product state (MPS)
[37] (for reviews see Refs. [38,39]). One can certify
genuine multipartite entanglement in the AKLT model in
a device-independent way efficiently. The preparation of
entangled states of pairs ðj; jþ 1Þ, as required in
Theorem 1, can be achieved by measuring only a small
neighborhood of each pair, and for all measurement out-
comes one is left with an entangled pair. Using the notation
introduced in Fig. 1, it suffices to measure the neighboring
spins of the pair in the basis fj0̃i; j1̃i; j2̃ig, where each
outcome occurs with probability one-third. For outcomes
corresponding to j0̃i and j1̃i the chain is decoupled, and
for the outcome corresponding to j2̃i, which corresponds to
entanglement swapping at the level of the virtual links,
one has shifted the problem of cutting to the next site. One
can then repeat the probabilistic cutting. Measuring n sites
on each side of the pair results in a success probability of
cutting out the pair of pcut ≥ 1–2ð1

3
Þn. The state of the

resulting pair depends on the outcome of the measure-
ments, and is always entangled and pure [40]. The success
probability goes to one exponentially fast with n. From the
results presented below, it follows that n ¼ OðlogNÞ, as
such a reduced success probability yields a smaller, non-
maximal violation of the bipartite inequality. This corre-
sponds to a polynomial number of measurement settings
and hence an efficient scheme to detect genuine multipartite
entanglement in the AKLT model. See also Ref. [31].
Dicke states.—Dicke states [41] are an important class

of multipartite entangled states. AnN-qubit Dicke state with
k excitations is given by jDN

k i ¼ ðNkÞ−1=2
P

permutationsj1i⊗k

j0i⊗N−k, where the sum refers to all permutations of the
parties. Entangled states for any pair of parties can be

FIG. 1. Pictorial representation of the AKLT state. There are
two virtual qubits (blue dots) at each site. Dots connected by an
edge represent singlet states jψ−i and ellipses refer to projections
onto the three-dimensional triplet subspace, where one makes the
following identification: j0̃i ¼ j00i, j1̃i ¼ j11i, j2̃i ¼ jψþi ¼
ð1= ffiffiffi

2
p Þðj01i þ j10iÞ.
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produced deterministically via Pauli Z and X measurements
(see Ref. [31]) and thus it follows from Theorem 1 that one
can show genuine multipartite entanglement in a device-
independentway. In contrast to the cases discussed above our
method is not efficient for Dicke states, as there are
exponentially many branches in the LOCC protocol.
Robustness and experimental feasibility.—The robust-

ness to imperfections is crucial for the experimental
feasibility of any protocol. We show that our method to
reveal genuine multipartite entanglement is robust to noise
and study two different situations. First we demonstrate
the robustness to noise in the general case. Then we study
the case of cluster states in more detail, where we also
investigate different error models.
From the analysis presented in Ref. [31] it follows that in

the presence of a nonmaximal violation of the bipartite
inequality one can show genuine multipartite entanglement
only for up to

M ¼
�
β� − βL
β� − β

�
ð2Þ

parties, where β is the observed value of the bipartite
inequality [42]. On the one hand M puts a bound on the
system size, such that one can show genuine multipartite
entanglement. On the other hand it can be viewed as
the number of parties of a subset of the whole system of
N > M parties, for which genuine M-partite entanglement
can be shown. A genuine M-partite entanglement is also
sometimes referred to as a state with entanglement depth
M, i.e., a state that is not (M − 1) producible. One sees that
the robustness is determined by how much the noise affects
the violation of each bipartite inequality, as well as the gap
of the local bound βL and the quantum bound β� of the
inequality. Nevertheless, one obtains a certain robustness
for any entangled pure state jψi. That is, there exists an ϵ-ball
around each entangled pure state where we can confirm
genuine multipartite entanglement with our method. To see
this consider an arbitrary state ρ which is close in fidelity to
the target state jψi, that is jhψ jρjψij ≥ 1 − ϵ. The observed
violation β of each bipartite inequality for ρ is then bounded
by β ≥ ð1 − ϵÞβ� þ ϵβmin, where βmin is the algebraic mini-
mum of the inequality, a fixed number. This is a consequence
of the fact that jψi is the eigenstate of the operator
corresponding to the Bell inequality with eigenvalue β�,
while all its other eigenvalues are lower bounded by βmin. It
follows from Eq. (2), that genuine multipartite entanglement
can be shown for up to M ¼ bð1=ϵÞðβ� − βL=β� − βminÞc.
In other words, the tolerated noise ϵ is inversely proportional
toM times a constant depending on the bipartite inequalities
(e.g., it is ≈0.15 for the CHSH inequality). Note that in
many cases imperfect measurements can be described as
ideal ones preceded by noisy channels, in all such cases the
argument presented above also promises some robustness
with respect to measurement imperfections.

We now turn to an explicit example and consider the
impact of local depolarizing noise (LDN) acting on each
qubit of a cluster state. LDN can be viewed as a worst case
local noise model [43]. It is parametrized by p ∈ ½0; 1�,
wherep ¼ 1 corresponds to no noise and p ¼ 0 to complete
depolarization and is described by a map EðpÞρ ¼ pρþ
ð1 − pÞ=4Pjσjρσj. We choose 1D and 2D cluster states for
testing the robustness and assume an infinite system size (or
periodic boundary conditions). In Fig. 2 we plot the number
of parties M for which one can show genuine multipartite
entanglement as a function of the noise 1 − p. We choose
a covering set which only contains nearest neighbor pairs.
For cluster states it is possible to establish maximally
entangled states between any pairs and hence we employ
the CHSH inequality [44] as the bipartite Bell inequality,
which has β� ¼ 2

ffiffiffi
2

p
and βL ¼ 2.

The plots suggest a polynomial relation between p
and M.
For a discussion of a setup where 1D cluster states are

generated via imperfect gates see Ref. [31].
Conclusion and outlook.—In this work we have intro-

duced a scheme to detect genuine multipartite entanglement
in a device-independent way based on bipartite Bell tests
of entangled pairs that are deterministically generated from
the initial state via LOCC. Our scheme detects all genuinely
multipartite entangled pure states, therefore showing that
neither knowledge of the Hilbert space dimension nor of
the calibration of measurement devices are necessary in
order to certify the genuine multipartite entangled nature of
pure quantum states.
Our result is also applicable to mixed states with a

sufficiently small amount of noise. The robustness of the
scheme is directly related to the ratios of the local bound
and the quantum violation of bipartite Bell inequalities,
and any improvement on such inequalities directly leads to
a larger set of states whose genuine multipartite entangle-
ment can be certified device independently using our
approach. Despite its generality our scheme is surprisingly
efficient for important classes of states including the AKLT
model and all (weighted) graph state with a bounded
connectivity. In the latter case, in order to show genuine
multipartite device-independent entanglement, one only
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FIG. 2. (a) Plot of the maximal number of parties for which one
can certify entanglement as a function of the noise 1 − p.
(b) Similar plot for larger, experimentally better accessible values
of 1 − p.
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needs to measure linearly many correlators with a fixed
number of settings. Together with its relative robustness this
makes our scheme very promising for future experiments.
We remark that a similar approach can be employed to

reveal genuine multipartite nonlocality for large classes of
states [45], where in this case the criterion is more stringent
as maximally entangled qubit pairs on a covering set need
to be generated deterministically. Still, many multipartite
states including the toric code, the ground state of the
AKLT model or all connected graph states, can be shown to
be genuine multipartite nonlocal.
Finally, it would be interesting to explore how this

approach can be used to detect more detailed entanglement
structures [46].
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