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We theoretically study the thermal Hall effect by magnons in skyrmion crystal phases of ferrimagnets in
the vicinity of the angular momentum compensation point (CP). To this end, we start by deriving the
equation of motion for magnons in the background of an arbitrary equilibrium spin texture, which gives rise
to the fictitious electromagnetic field for magnons. As the net spin density varies, the resultant equation of
motion interpolates between the relativistic Klein-Gordon equation at the CP and the nonrelativistic
Schrödinger-like equation away from it. In skyrmion crystal phases, the right- and the left-circularly
polarized magnons, with respect to the order parameter, are shown to form the Landau levels separately
within the uniform skyrmion-density approximation. For an experimental proposal, we predict that the
magnonic thermal Hall conductivity changes its sign when the ferrimagnet is tuned across the CP,
providing a way to control heat flux in spin-caloritronic devices on the one hand and a feasible way to
detect the CP of ferrimagnets on the other hand.
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Introduction.—Magnetic skyrmions are swirling spin
textures, which are characterized by the topological
skyrmion number defined in terms of the real-space
spin configuration [1]. Their topological characteristic
influences not only the dynamics of themselves, e.g., by
engendering the Magnus force, but also the dynamics of
electrons moving through them [2]. For example, when
ferromagnetic skyrmions form a crystal lattice, electrons
whose spin follows the local spin texture adiabatically
experience the Lorentz force due to the fictitious magnetic
field proportional to the skyrmion density, and thereby, they
exhibit the so-called topological Hall effect [3]. Recently,
there has been a growing interest in skyrmions in anti-
ferromagnets [4] and ferrimagnets [5–7] because of their
faster dynamics and smaller sizes compared to ferromag-
netic counterparts, which can enable high-speed and high-
density spintronic devices [8,9]. Electronic transport prop-
erties of an antferromagnetic skyrmion crystal have been
investigated as well theoretically [10–14], showing funda-
mental differences from those of ferromagnets such as the
absence of the topological Hall effect.
Magnons, which are quanta of spin waves [15], can

transport information and exhibit topological phenomena
similarly to electrons. Their potential ability to realize
devices based on insulating magnets, which are free from
drawbacks of conventional electronics such as significant
energy loss due to Ohmic heating, has led to the emergence
of magnon-based spintronics [16]. In skyrmion crystal
phases of ferromagnets, magnons have been shown to

experience the fictitious magnetic field by keeping their
spin antiparallel to the local spin texture [17]. As a result,
magnons form the approximate Landau levels with the
finite Berry curvature [18], causing the thermal Hall effect
[19–21]. However, the magnon bands and their transport
properties in antiferromagnetic skyrmion crystals have not
been studied.
In this Letter, we fill this gap by investigating a

theoretically more general problem: The dynamics of
magnons in the presence of skyrmion crystals in ferrimag-
nets exhibiting the angular momentum compensation point
(CP) [22], at which the net spin density vanishes but the
magnetization can be finite. One class of such ferrimagnets
is rare-earth transition-metal alloys, such as GdFeCo or
CoGd, whose net spin density can be tuned by varying
either temperature [23] or chemical composition [24]. To
this end, we start by deriving the equation of motion for
magnons in the presence of an arbitrary spin texture, which
includes the fictitious electromagnetic field. The obtained
equation of motion is reduced to the nonrelativistic
Schrödinger-like equation for ferromagnetic magnons
away from the CP and to the relativistic Klein-Gordon
equation for antiferromagnetic magnons at CP, interpolat-
ing between the dynamics of ferromagnets and that of
antiferromagnets as previously shown for the dynamics of
domain walls and skyrmions [25,26]. In the presence of a
skyrmion crystal, two species of magnons with right and
left circular polarization (with respect to the order param-
eter) will be shown to experience the fictitious magnetic
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fields of opposite directions and form the Landau levels
separately, realizing two-dimensional magnonic topologi-
cal insulators [27]. As an experimental proposal, we will
show that the thermal Hall conductivity changes its sign as
the ferrimagnet is tuned across the CP. See Fig. 1 for a
schematic illustration. One promising platform is offered
by GdFeCo films, where isolated skyrmions have been
observed [5] and the antiferromagnetic domain-wall
dynamics has been demonstrated at the CP [25]. The
proposal provides not only a feasible way to control the
direction of the thermal flux, which can be useful in spin
caloritronics [28], but also a thermal transport measurement
for determining the CP, which can complement the other
methods based on magnetic resonances [23,29] or domain-
wall speed measurements [25].
General formalism.—Our model system is a collinear

ferrimagnet with potential energy density given by [26]

U½n� ¼ Að∇nÞ2=2þDn · ð∇ × nÞ − h · n; ð1Þ

where nðr; tÞ is the three-dimensional unit vector repre-
senting the direction of the magnetic order. Here, the first
term is the exchange energy; the second term is the
Dzyaloshinskii-Moriya interaction (DMI), which exists
when the inversion symmetry is broken [30]; the last term
represents the Zeeman coupling between the external field
h and the magnetization along the direction of the order
parameter. Here, we are neglecting the other terms such as
the dipolar interaction by following the previous literature
on chiral magnets [31]. With a suitable choice of the
coefficient values, the ground state is a skyrmion crystal
[31]. The equilibrium order-parameter configuration will be
denoted by n0.
The dynamics of the order parameter n of the ferrimag-

net can be described by the following Landau-Lifshitz-like
equation [25,26,32]:

s _nþ ρn × n̈ ¼ n × ðA∇2n − 2D∇ × nþ hÞ; ð2Þ

where s is the equilibrium spin density and ρ parametrizes
the inertia associated with the dynamics of the order
parameter [33]. The left-hand side is the time derivative
of the net spin density, s ¼ snþ ρn × _n, the former and
the latter of which are the longitudinal and the transverse
component of the spin density with respect to the order
parameter, respectively [34]. Conventional ferromagnets
and antiferromagnets have only the first and the second
term, respectively, on the left-hand side.
To obtain the equation of motion for a magnon, which is

a quantum of small-amplitude fluctuations from the
equilibrium state, we use the local coordinate system n0,
where the equilibrium state is in the positive z direction,
n0
0 ≡ ẑ [19,35]. The transformation can be implemented

by a three dimensional rotation matrix R satisfying
n0 ¼ Rn0

0. We will use one explicit realization of it
in this work: R ¼ expðϕ0LzÞ expðθ0LyÞ for n0 ¼
ðsin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0Þ where Ly and Lz are
the generators of the rotations about the y and the z axis,
respectively [36].
The equation of motion for magnons can be

obtained from Eq. (2) to linear order in the fluctuation
δn0 ≡ n0 − ẑ ¼ n0xx̂þ n0yŷ. Since the equation is second
order in time derivative, there are two types of solutions. It
is convenient to represent the two monochromatic solutions
with the complex fields: ψþ ¼ n0x − in0y ∝ expð−iϵt=ℏÞ for
right-circularly polarized magnons and ψ− ¼ n0x þ in0y ∝
expð−iϵt=ℏÞ for left-circularly polarized magnons where ϵ
is the magnon energy. Wewill refer the former and the latter
to the positive-chirality (q ¼ 1) and the negative-chirality
(q ¼ −1) solutions, respectively. The equation of motion
for a magnon of chirality q is given by

−qs
�
i∂t −

qϕ
ℏ

�
ψqþ ρ

�
i∂t−

qϕ
ℏ

�
2

ψq ¼ A

�
∇
i
−
qa
ℏ

�
2

ψq;

ð3Þ

which is our first main result. See Supplemental Material
for its derivation [37]. Here, ϕ is the texture-induced scalar
potential given by ϕ ¼ ℏðR−1∂tRÞ12 ¼ −ℏ cos θ0∂tϕ0,
where the subscript 12 denotes a corresponding matrix
element of R−1∂tR. The vector potential consists of
two contributions [19]: a ¼ at þ ad, where the first term
is from the exchange energy, ati ¼ −ℏðR−1∂iRÞ12 ¼
ℏ cos θ0∂iϕ0, and the second term is from the DMI,
ad ¼ −ðℏD=AÞn0. The texture-induced fictitious electric
and magnetic fields are given by

eti ¼ −∂iϕ − ∂tati ¼ ℏn0 · ð∂tn0 × ∂in0Þ; ð4Þ

bti ¼ ϵijk∂jatk ¼ ðℏ=2Þϵijkn0 · ð∂kn0 × ∂jn0Þ; ð5Þ

ferrimagnet in skyrmion crystal phase

FIG. 1. Schematic illustration of the magnonic heat flux jQ
through a ferrimagnet in its skyrmion crystal phase subjected to a
temperature gradient ∇T. The colored small arrows depict a
single skyrmion texture of the order parameter n. Magnons can
exhibit the thermal Hall effect since the skyrmion crystal gives
rise to the fictitious magnetic field, which magnons of left and
right circular polarization (with respect to the order parameter)
experience as if they carry the positive and the negative charge,
respectively. The induced transverse heat flux changes its
direction as the net spin density s along n varies across 0.
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in the Einstein summation convention. The obtained fields
are identical to those for electrons [2,39] and magnons
[19,35] in ferromagnets. The DMI-induced vector potential
ad gives rise to another contribution to the fictitious fields,
ed ¼ −∂tad ¼ ðℏD=AÞ∂tn0 and bd ¼ −ðℏD=AÞ∇ × n0

[19]. Note that the chirality q ¼ �1 of a magnon serves
as its charge with respect to the electromagnetic fields,
which can be understood as follows. Since the positive- and
negative-chirality magnons carry spin whose directions are
locked parallel and antiparallel with respect to the back-
ground spin texture n0 [40], they pick up the Berry phase
with the opposite signs and experience the opposite
fictitious electromagnetic fields [41]. During the derivation,
we neglected the second and higher order terms in ϕ and a
and the term proportional to the external field, by focusing
on high-energy magnons whose wavelength is much
smaller than the spatial extension of the texture and whose
kinetic energy dominates the Zeeman energy, which we
will refer to as the exchange approximation [42].
At the CP, the equilibrium spin density vanishes, s ¼ 0,

and the nature of the dynamics becomes antiferromagnetic.
The equation of motion is then reduced to the following
Klein-Gordon equation [43] that describes the dynamics of
a relativistic particle with charge q in the presence of an
electromagnetic field:

ðiℏ∂t − qϕÞ2ψq ¼ c2
�
ℏ
i
∇ − qa

�
2

ψq; ð6Þ

where c≡ ffiffiffiffiffiffiffiffi
A=ρ

p
is the characteristic speed that is the

magnon speed in the absence of electromagnetic fields.
This equation describing the dynamics of magnons in
antiferromagnets moving through a general spin texture
has not been derived before, except for a special case of a
one-dimensional domain wall [40].
When sufficiently distant from the CP, a ferrimagnet has

enough spin density s to neglect the inertial term ∝ ρ in
Eq. (2) for the low-energy dynamics. The equation of
motion (3) for ferrimagnetic magnons is then reduced to
that for ferromagnetic magnons [19,35]:

−sgnðqsÞiℏ∂tψq ¼
�
1

2m

�
ℏ
i
∇−qa

�
2

− sgnðsÞϕ
�
ψq; ð7Þ

with the effective mass m ¼ ℏjsj=2A, which resembles the
Schrödinger equation for a nonrelativistic charged particle
subjected to an electromagnetic field.
It is instructive to discuss the solutions to Eq. (3) in the

absence of the scalar and the vector potentials ϕ ¼ 0 and
a ¼ 0, which are given by the plane-wave solutions, ψq ∝
expðik · r − iϵt=ℏÞ [44]. The energy-momentum relation is
given by

ϵqðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc2Þ2 þ ℏ2c2k2

q
þ sgnðqsÞmc2: ð8Þ

The solution to Eq. (6) for an antiferromagnetic magnon is
given by the high-kinetic energy limit, i.e., ℏjkj ≫ mc:
ϵ� ≈ ℏcjkj. The two solutions are degenerate at the level of
approximation taken in Eq. (6) where the time reversal
symmetry is respected by having vanishing spin density
s ¼ 0. The lower-energy solution to Eq. (7) for a ferro-
magnetic magnon is given by the low-kinetic energy
limit, i.e., ℏjkj ≪ mc: ϵq ≈ ℏ2k2=2m with the chirality
q ¼ −sgnðsÞ. Note that spin of the low-energy magnons is
locked antiparallel to the direction of the background spin
density sn0. Here, the momentum scale governing the
separation between a nonrelativistic and a relativistic
regime is given by mc ¼ ℏjsj=2 ffiffiffiffiffiffi

Aρ
p

.
Magnon in a skyrmion crystal.—Now, let us apply the

above formalism to one specific example: Magnons in a
skyrmion crystal of a quasi-two-dimensional ferrimagnet.
Wewill assume that the skyrmion crystal is static, for which
the fictitious electric field vanishes. A skyrmion is char-
acterized by its integer skyrmion number [45]:

Q ¼ 1

4π

Z
dxdyn0 · ð∂xn0 × ∂yn0Þ≡

Z
dxdyρsky; ð9Þ

counting how many times the order parameter n0 wraps the
unit sphere. Under suitable conditions, skyrmions can
crystalize in a triangular lattice as observed in several
materials [2], giving rise to the finite skyrmion number
density per unit area, which we denote by ρsky. The
associated fictitious magnetic field [Eq. (5)] is given by

bt ¼ −4πℏρskyẑ: ð10Þ

The spatial profile of the magnetic field depends on the
detailed values of material parameters, making it cumber-
some to take into account analytically. Therefore, below,
we will account for its effects by spatially averaging it:
b ¼ −4πℏhρskyiẑ [37]. The corresponding magnetic length

is given by l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=jbzj

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjhρskyij

p
, which is pro-

portional to the distance between neighboring skyrmions.
The DMI-induced contribution bd vanishes after spatial
averaging. In addition, we will assume the negative sky-
rmion density ρsky < 0, and thus, bz > 0 without the loss of
generality for subsequent discussions.
To solve Eq. (3), we adopt the known results for the

Landau levels of a nonrelativistic charged particle subjected
to a uniform magnetic field [36,46]. Plugging the mono-
chromatic function, ψqðr; tÞ ¼ expð−iϵt=ℏÞψnn0 ðrÞ into
Eq. (3), where ψnn0 ðrÞ is the known eigenfunction of the
right-hand side of Eq. (3) for the nth Landau level (n0 is the
index for states within each Landau level), yields the
following solutions:

ϵqn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc2Þ2 þ ℏc2bzð2nþ 1Þ

q
þ sgnðqsÞmc2: ð11Þ
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These magnon bands in a ferrimagnetic skyrmion crystal
within the approximation of the uniform skyrmion density
are our second main result. The number of states in one
Landau level is given by the total number of the fictitious
magnetic flux quanta through the plane, which is twice the
total number of skyrmions in the system. The massless
relativistic limit is given by ϵ�n ≈ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏbzð2nþ 1Þp

,
which agrees with the known result for the Klein-
Gordon equation [47]. The lower band in the massive
limit, mc2 ≫ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏbzð2nþ 1Þp

, is reduced to the solution
for nonrelativistic particles: ϵn ≈ ðℏbz=2mÞð2nþ 1Þ. The
solution can be cast into the dimensionless form in terms of
the rescaled energy ξ≡ ϵl=ℏc and the rescaled spin density

ζ ≡ sl=2ρc: ξ�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 2nþ 1

p
� ζ. See Fig. 2 for the

plot. The solid gold and the dashed blue line represent the
right-circularly polarized (q ¼ þ) and the left-circularly
polarized (q ¼ −) magnon bands, respectively.
Tunable thermal Hall effect.—Each flat Landau level

of magnons [19,20] has the Chern number ν0 ¼ −q, which
is the integral of the uniform Berry curvature defined in
terms of the magnonic wave function over the Brillouin
zone [36]. Such magnons can give rise to the thermal
Hall effect [48,49], a phenomenon of generation of a
transverse energy flux jyQ upon the application of a
longitudinal temperature gradient ∂xT: jyQ ¼ −κyx∂xT,
which is quantified by the thermal Hall conductivity κyx

[50]. Within the linear response theory, the thermal
Hall conductivity for our case is given by κyx ¼
ðk2BT=2πℏtÞ

P
nfc2½ρBðϵ−n Þ� − c2½ρBðϵþn Þ�g, where t is

the thickness of the ferrimagnet, c2ðxÞ ¼ ð1þ xÞ×
½logð1þ x−1Þ�2 − ðlog xÞ2 − 2Li2ð−xÞ, Li2ðzÞ is the poly-
logarithm function, and ρBðϵÞ ¼ ½expðϵ=kBTÞ − 1�−1 is the
Bose-Einstein distribution [48]. Figure 3(a) shows the
plot of the rescaled thermal Hall conductivity κ̄yx ≡
ð2πℏt=k2BTÞκyx as a function of the rescaled spin density
ζ ¼ sl=2ρc. The plot is drawn with the following value for

the ratio of the characteristic relativistic energy scale to the
temperature: ℏcl−1=kBT ∼ 0.11, which is obtained from the
magnon speed c ∼ 104 m=s calculated for GdFeCo [26],
the magnetic length l ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjhρskyij

p
∼ 10 nm for the

interskyrmion distance ∼50 nm reported in Ref. [51], and
the temperature T ¼ 70 K. The induced transverse heat
flux changes its direction as the net spin density varies
across zero, at which magnons of two chiralities are
degenerate and thus the thermal Hall effect is absent
similarly to antiferromagnets [27]. When the spin density
is negative, e.g., there are more positive-chirality magnons
than the others, causing the negative thermal Hall conduc-
tivity as shown in Fig. 3(b).
Next, let us estimate the change of the thermal Hall

conductivity Δκyx as the net spin density s varies by
Δs ∼ 5 × 10−8 J s=m3, which can be achieved by changing
the temperature by ΔT ¼ 10 K around the CP of GdFeCo
films according to the numerical results in Ref. [25]. Here,
we assume that all the parameters except the spin density
are constant. By using the inertia ρ ∼ ℏ2=Jd3 obtained
with the Heisenberg exchange energy J ∼ 5 meV and the
lattice constant d ∼ 0.5 nm, the above Δs yields Δκyx ∼
0.05 W=Km for 50-nm thick films, which is comparable to
the large thermal Hall conductivities observed in frustrated
magnets [52].
Discussion.—Let us discuss the approximations used in

this work. First, in obtaining the magnon bands [Eq. (11)]
shown in Fig. 2 from the equation of motion [Eq. (3)], we
have used the approximation of the uniform fictitious
magnetic field by assuming sufficiently closely packed
skyrmions [37]. Second, for the numerical estimation of the
variation of the thermal Hall conductivity, we assumed that

FIG. 2. The plot of the Landau levels [Eq. (11)] of magnon
bands in ferrimagnetic skyrmion crystals in terms of the rescaled
energy ϵl=ℏc and the rescaled spin density sl=2ρc. The solid gold
and the dashed blue lines represent the right-circularly polarized
(q ¼ þ) and the left-circularly polarized (q ¼ −) magnon bands,
respectively.

+

-

+

-

-+

(a)

(b) (c)

FIG. 3. (a) The plot of the rescaled thermal Hall conductivity
κ̄yx ≡ ð2πℏt=k2BTÞκyx, which parametrizes the ratio of the in-
duced transverse heat flux jyQ to the applied longitudinal temper-
ature gradient ∂xT for the ferrimagnet film of thickness t. (b) and
(c) the schematic illustrations of the positive-chirality (þ) and
the negative-chirality (−) magnon motions subjected to a temper-
ature gradient ∇T ¼ ð∂xTÞx̂ and the resultant transverse energy
flux jQ ¼ jyQŷ.
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all of the other materials parameters ρ, A, and D other than
the spin density s are constant. We would like to remark
here that our main experimental prediction that the thermal
Hall conductivity κyx changes its sign across the CP, where
s flips its sign, can be deduced from the time-reversal
symmetry property of the magnon equation of motion
[Eq. (3)], and thus, it does not rely on these two approx-
imations. In addition, our theory of magnonic Landau
levels is applicable to materials with sufficiently small
damping and weak disorder so that mean free path of
magnons is much longer than the interskyrmion distance
and thus longer than the magnetic length.
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