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Models of classical Josephson junction chains turn integrable in the limit of large energy densities or
small Josephson energies. Close to these limits the Josephson coupling between the superconducting grains
induces a short-range nonintegrable network. We compute distributions of finite-time averages of grain
charges and extract the ergodization time TE which controls their convergence to ergodic δ distributions.
We relate TE to the statistics of fluctuation times of the charges, which are dominated by fat tails.
TE is growing anomalously fast upon approaching the integrable limit, as compared to the Lyapunov time
TΛ—the inverse of the largest Lyapunov exponent—reaching astonishing ratios TE=TΛ ≥ 108. The
microscopic reason for the observed dynamical glass is rooted in a growing number of grains evolving over
long times in a regular almost integrable fashion due to the low probability of resonant interactions with the
nearest neighbors. We conjecture that the observed dynamical glass is a generic property of Josephson
junction networks irrespective of their space dimensionality.
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Ergodicity is a core concept of statistical physics of
many-body systems. It demands infinite-time averages of
observables during a microcanonical evolution to match
with their proper phase space averages [1]. Any laboratory
or computational experiment is, however, constrained to
finite averaging times. Are these sufficient or not? How
much time is needed for a trajectory to visit the majority of
the available microcanonical states, and for the finite-time
average of an observable to be reasonably close to its
statistical average? Can we define an ergodization time-
scale TE on which these properties manifest? What is that
ergodization time depending on? Doubts on the applicabil-
ity of the ergodic hypothesis itself were discussed for such
simple cases as a mole of Ne at room temperature (see
Ref. [2], and references therein). Glassy dynamics have
been reported in a large variety of Hamiltonian systems
[3–6]. Further, spin glasses [7] and stochastic Levy
processes [8–13] reveal that the ergodization time (and
even ergodicity itself) may be affected by heavy-tailed
distributions of lifetimes of typical excitations. The aim of
this work is to address the above issues using a simple and
paradigmatic dynamical many-body system test bed.
Josephson junction networks are devices that are known

for their wide applicability over various fields, such as
superconductivity, cold atoms, optics, and metamaterials,
among others [14–16] (for a recent survey on experimental
results, see Ref. [17]): synchronization has been studied in
Refs. [18,19], discrete breathers were observed and studied
in Refs. [20–23], qubit dynamics was analyzed in
Refs. [24,25], and the thermal conductivity was computed
in Refs. [26,27]. In particular, a recent study conducted by
Pino et al. [28] showed the existence of a nonergodic or bad

metal region in the high-temperature regime of a quantum
chain of Josephson junctions, that exists as a prelude to a
many-body localization phase [29]. Notably, in Ref. [28] it
has been conjectured that the bad metal regime persists as a
nonergodic phase in the classical limit of the model—the
large energy density regime of a chain of coupled rotors,
close to an integrable limit. A similar prediction of a
nonergodic phase (called the weak coupling phase) in the
same model was obtained in Ref. [30]. Further, in Ref. [31],
a faster decay of thermal conductivity in the high-temper-
ature regime is observed. On the other side, a strong
slowing-down of relaxations has been identified in the
proximity of such a limit if the nonintegrable perturbation
spans a short-range network between corresponding actions
[32]. The limit of weak Josephson coupling or high
temperature corresponds precisely to that short-range net-
work case. Is the Josephson junction chain then ergodic
or not?
In this Letter we demonstrate the existence of a dynami-

cal glass in a classical Josephson junction chain of coupled
rotors. We evaluate the convergence of distributions of
finite-time averages of the superconducting grain charges
and extract an ergodization timescale TE. We show that this
timescale is related to the properties of the statistics of
charge fluctuation times. Such fluctuation event statistics
was introduced in Refs. [32,33]. We compute the Lyapunov
time TΛ—the inverse of the largest Lyapunov exponent Λ
[34,35]. The Lyapunov time is a lower bound for the
ergodization time: TΛ ≤ TE. In the reported dynamical
glass, the dynamics stays ergodic and TE is finite. However,
TE is growing anomalously fast upon approaching the
integrable limit, as compared to TΛ reaching astonishing
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ratios TE=TΛ ≥ 108. We show that TE is controlled by fat
tails of charge fluctuation time distributions. We compute
the spatiotemporal evolution of nonlinear resonances
between interacting grains [30,36]. The microscopic reason
for the observed dynamical glass is rooted in a growing
number of grains evolving over long times in a regular
almost integrable fashion due to the low probability of
resonant interactions with nearest neighbors. The dynami-
cal glass behavior is expected to be a generic property of a
large class of dynamical systems, where ergodization
timescales depend sensitively on control parameters. At
the same time, the concept of ergodicity is preserved, and
statistical physics continues to work—it is all just a matter
of timescales.
We consider the Hamiltonian

Hðq; pÞ ¼
XN

n¼1

�
p2
n

2
þ EJ½1 − cosðqnþ1 − qnÞ�

�
; ð1Þ

describing the dynamics of a chain of N superconducting
islands with weak nearest neighbor Josephson coupling in
its classical limit. We note that this model is equivalent to
an XY chain or similarly to a coupled rotor chain, where the
grain charging energies turn into the above kinetic energy
terms [28,36]. We apply periodic boundary conditions
p1 ¼ pNþ1 and q1 ¼ qNþ1 for the conjugate angles qn
and momenta pn. EJ controls the strength of Josephson
coupling. The corresponding equations of motion of
Eq. (1) are

_qn ¼pn; _pn¼EJ½sinðqnþ1−qnÞþ sinðqn−1−qnÞ�: ð2Þ

This system has two conserved quantities: the total energy
H and the total angular momentum L ¼ P

N
n¼1 pn. We will

choose L ¼ 0 without loss of generality. Exact expressions
for average full h and kinetic k energy densities as functions
of temperature are obtained using a Gibbs distribution [37]
and yield

h ¼ kþ EJ

�
1 −

I1ðEJ=2kÞ
I0ðEJ=2kÞ

�
; ð3Þ

with I0;1 being the modified Bessel functions of the first
kind. We investigate the equilibrium dynamics of the above
system in proximity to two integrable limits: h → ∞ or
EJ → 0. At these limits, the system reduces to a set of
uncoupled superconducting grains H0 ¼

P
N
n¼1ðp2

n=2Þ
[36]. In proximity to these limits, the Josephson terms
induce a nonintegrable perturbation through a short-range
interaction network of actions fpngn [32]. We consider the
kinetic energies kn ¼ p2

n=2 as a set of time-dependent
observables. Because of the discrete translational invari-
ance of H, all kn variables are statistically equivalent,
fluctuating around their equilibrium value k. We will
integrate the equations of motion using symplectic

integrators [37]. Unless otherwise stated, we use the system
size N ¼ 210.
To quantitatively assess the ergodization time TE, we

compute finite-time averages k̄n;T ¼ ð1=TÞ R T
0 knðtÞdt for a

set of R different trajectories at given h; EJ. The corre-
sponding distribution ρðk̄;TÞ is characterized by its first
moment μkðTÞ and the standard deviation σkðTÞ. Assuming
ergodicity, μkðT → ∞Þ ¼ k and σkðT → ∞Þ ¼ 0, since the
distribution ρðk̄;T → ∞Þ ¼ δðk̄ − kÞ. In the inset of Fig. 1,
we show the distributions ρðk̄;TÞ for h ¼ 1.2 at two
different averaging times T ¼ 105, 108. As expected, the
distribution ρðk̄; TÞ converges to a delta function, centered
around k. We then use the fluctuation index qðTÞ ¼
½σ2kðTÞ=μ2kðTÞ� as a quantitative dimensionless measure
of the above convergence properties.
In Fig. 1, we show qðTÞ for different values of

h with EJ ¼ 1. We find qðT ≪ TEÞ ¼ qð0Þ and
qðT ≫ TEÞ ∼ TE=T, where TE is our definition of the
ergodization timescale. We rescale and fit the different
curves qðTÞ and extract TE [37]. The result is plotted in
Fig. 3(a) with green squares. TE quickly grows by orders of
magnitude upon increasing the energy density h in a rather
moderate window of values, close to a power law TE ∼ h6.
When fixing h ¼ 1 and varying EJ, we make similar
observations [37], with TE∼E−6.5

J , as shown in Fig. 3(b).
With our results, we validate ergodic dynamics in the
considered system. Previous reports [28,30] did not address
the quickly growing timescale TE upon approaching the
integrable limit.
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FIG. 1. (a) Fluctuation index qðTÞ for energy densities (bottom
to top) 0.1 (black), 1.2 (red), 2.4 (green), 3.8 (blue), 5.4
(magenta), and 8.5 (cyan). Inset: ρðk̄;TÞ for h ¼ 1.2 and two
different times T ¼ 105 (blue circle) and T ¼ 108 (magenta
circle) marked in the main plot. Here, EJ ¼ 1 and the number
of realizations R ¼ 12 for all data.
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Let us study the fluctuation statistics of the observables
knðtÞ. Each of them has to fluctuate around their common
average k. This allows us to segment the trajectory of the
whole system phase space into consecutive excursions
[32,33]. Note that for each site n the segmenting is
different, and we account for all of them. We measure
the consecutive piercing times tin at which knðtÞ ¼ k. We
then compute the excursion times τ�n ðiÞ ¼ tiþ1

n − tin for a
trajectory of excursion events during which kðtÞ > k (τþ)
and kðtÞ < k (τ−), respectively. Figure 2 shows the dis-
tributions for EJ ¼ 1 and various energy densities h. As h
increases, both distributions increase their tail weights,
with Pþ dominating over P−. Further, the distributions
develop intermediate tail structures close to a 1=τ2 (see
inset in Fig. 2).
We can now compute the following two timescales: the

average excursion time μτ and the standard deviation στ of
the distribution Pþ, which are shown in Fig. 3(a) (orange
diamonds and blue triangles) as functions of h. We observe
that στ equals with μτ at h ≈ 1 and quickly overgrows μτ for
h > 1, signaling the proximity to an integrable limit, where
the dynamics is dominated by fluctuations rather than the
means. Indeed, if the distributions P�ðτÞ asymptotically
reach a 1=τ2 dependence in the integrable limit, then not
only the timescales μτ and στ have to diverge, but their ratio
στ=μτ will diverge as well.
The above timescales are related to the ergodization

timescale TE as

TE ∼ τq ≡ σ2τ
μτ

: ð4Þ

This relation can be obtained, e.g., after approximating the
dependence knðtÞ by a telegraph random process with
excursion time distributions P� [37]. We plot Aτq vs h in
Fig. 3(a) (black circles) with a fitting parameter A ¼ 130.
The curve is strikingly close to the dependence TEðhÞ for
h > 1. We thus independently reconfirm that the consid-
ered system dynamics is ergodic, yet with quickly growing
timescales of ergodization. When fixing h ¼ 1 and varying
EJ, we make similar observations as shown in Fig. 3(b).
The physical origin of A is an interesting and open question
for future studies.
With ergodicity being restored, the question remains:

what is the microscopic origin of the enormously fast
growing ergodization time? Since the considered system is
nonintegrable, its dynamics must be chaotic. Therefore
there is a Lyapunov timescale TΛ ¼ 1=Λ dictated by the
largest Lyapunov exponent Λ. TΛ can be expected to serve
as a lower bound for the ergodization timescale. We
compute Λ using standard techniques [37] and also
compare it with theoretical predictions [34,35]. We plot
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FIG. 2. PþðτÞ (solid lines) and P−ðτÞ (dashed lines) for various
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(red). Here, EJ ¼ 1. The black line corresponds to a power law
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The black solid horizontal line guides the eye at value −2.
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FIG. 3. (a) Timescales TE (green squares), Aτq (black circles),
Lyapunov time TΛ (magenta stars), μτ (orange diamonds), and στ
(blue triangles) vs the energy density h for EJ ¼ 1 and A ¼ 130.
(b) Same as in (a) but vs EJ at the fixed energy density h ¼ 1.
Inset: Rescaled times (Aτq, TE, mτ, and στ) in units of the
Lyapunov time TΛ.
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the Lyapunov time TΛ vs h in Fig. 3(a) and vs EJ in
Fig. 3(b) (magenta stars). The surprising finding is that
TΛ ≲ μτ, in proximity to the integrable limit. Thus,
TΛ ≪ TE; e.g., for EJ ¼ 1 and h ¼ 10 we find TΛ ∼ 1

and TE ∼ 108. The inset of Fig. 3(b) demonstrates the above
findings where TE, Aτq, μτ, and στ are plotted vs TΛ and in
units of TΛ. These are typical features of the novel
dynamical glass, which starts at h ≈ EJ.
In order to advance, we analyze the spatiotemporal

dynamics of knðtÞ in Fig. 4(a). We plot black points during
events knðtÞ > k for EJ ¼ 1 and h ¼ 5.4 over a time
window of 105 and a spatial window of 100 sites. We
observe many long-lasting events, which slowly diffuse in
space. At the same time, regions between these long-lasting
events appear to be more chaotic, with this chaos however
being confined to regions between two events. The events
correspond to long-living breatherlike excitations [32].
The existence of chaotic spots was predicted in
Refs. [28,30]. We then compute the frequency difference
Δn ¼ jωn − ωnþ1j between neighboring grains, where
ωn ¼ _qn ¼ pn. Following Refs. [28,30,42], we define a
chaotic resonance if a neighboring pair Δn < 1 and
Δnþ1 < 1. We plot the spatiotemporal evolution of these
nonlinear resonances in Fig. 4(b) with the resonances

marked with black dots. We observe a slowly diffusing
and meandering network of chaotic puddles.
The large ergodization time TE could be related to a

small density of chaotic spots and/or to a weak interaction
between the spots. The density of chaotic spots was
calculated in Ref. [30] as D ¼ ð1= ffiffiffi

π
p Þ R y

0 e
−x2dx, where

y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
16β=3

p
for EJ ¼ 1 and β is the inverse temperature

[37]. Note that 1=β ≈ 2h for h ≫ 1. It follows that D ∼
1=

ffiffiffi
h

p
for h ≫ 1. This decay is way too slow to explain the

rapid increase of the ergodization time TE upon increasing
h in Fig. 3(a). There, h increases by 1 order of magnitude,
D decreases by a factor of 3, but TE increases by 6 orders of
magnitude. Therefore, the ergodization time in the dynami-
cal glass must be controlled by a very weak interaction
between chaotic spots, which have to penetrate silent
nonchaotic regions formed by breatherlike events.
To conclude, the classical dynamics of a Josephson

junction chain at large temperatures (i.e., energy densities)
or likewise at weak Josephson coupling is characterized by
a dynamical glass in its proximity to corresponding
integrable limits. This dynamical glass is induced by the
short range of the nonintegrable perturbation network
spanned between the actions which turn integrals of motion
at the very integrable limit. The dynamics of the system
remains ergodic, albeit with rapidly increasing ergodization
time TE. We relate TE to timescales extracted from the
fluctuations of the actions. We also show that the Lyapunov
time, which is marking the onset of chaos in the system, is
orders of magnitude shorter than TE. The reason for the
rapidly growing ergodization time is rooted in the slowing-
down of interactions between chaotic spots. By virtue of the
short-range network we expect our results to hold as well in
higher space dimensions. A highly nontrivial and interest-
ing question is the relation of the dynamical glass to the
Kolmogorov-Arnold-Moser (KAM) regime [43–45].
Common expectations tell us that the KAM regime thresh-
olds of a nonintegrable perturbation vanish very fast with
an increasing number of degrees of freedom N, perhaps
even exponentially fast due to proliferating resonances
[46–49]. The long-lasting regular motion in the dynamical
glass is local both in space and time, as manifested by the
exponential cutoff tails in Fig. 2. The dynamical glass
appears is originated from a chaotic component of measure
one in the available phase space. This is very different from
few degree of freedom systems with a mixed phase space.
A quantitative theory for the dependence of the ergodiza-
tion time on the control parameters in the proximity of the
discussed integrable limits is a challenging future task, and
as intriguing as the question about the fate of the dynamical
glass in the related quantum many-body problem.
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FIG. 4. (a) Spatiotemporal evolution of a part of the Josephson
junction chain for EJ ¼ 1 and h ¼ 5.4. Black points correspond
to events with kn > k. (b) Spatiotemporal evolution of nonlinear
resonances for the same parameters as in (a). See text for details.
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