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We report on the first experimental reconstruction of an entanglement quasiprobability. In contrast to
related techniques, the negativities in our distributions are a necessary and sufficient identifier of
separability and entanglement and enable a full characterization of the quantum state. A reconstruction
algorithm is developed, a polarization Bell state is prepared, and its entanglement is certified based on the
reconstructed entanglement quasiprobabilities, with a high significance and without correcting for
imperfections.
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Introduction.—Entanglement is a key feature of any
composite quantum system, and it is inconsistent with our
classical understanding of correlations. For these reasons,
this quantum phenomenon has been discussed as a prime
example for studying the remarkable features of quantum
physics since its discovery [1,2]. The implications of the
existence of entanglement have been objected to in the
seminal Einstein-Podolsky-Rosen paper [3]. Later, Bell
formulated his famous inequality allowing us to probe for
entanglement [4]. Subsequently, based on this inequality,
entanglement has been experimentally demonstrated to be a
vital part of nature [5]. Nowadays, entanglement has become
an undisputed property of quantum systems and, in addition,
is a versatile resource for realizing, e.g., quantum compu-
tation and communication tasks beyond classical limitations
[6,7], rendering its verification an essential tool for the
function of upcoming quantum technologies. Thus, exper-
imentally certifying entanglement is one of the main
challenges for realizing such applications [7,8].
Mostly independently from the development of the

entanglement theory, the notion of quasiprobabilities was
devised by Wigner [9] and others; see Ref. [10] for a
thorough introduction. In particular, the nonclassicality in a
single optical mode can be visualized through negativities
in this distribution which cannot occur for classical light.
For this reason, quantum-optical quasiprobabilities became
arguably the most essential and widely applied tool for an
intuitive characterization of quantum light in experiments;
see Ref. [11] for a recent implementation. Generalizations
of the Wigner function can be used to identify nonclassical
multimode radiation fields, such as implemented in
Ref. [12]. However, when excluding trivial scenarios
(see, e.g., Ref. [13] for an exception), the negativities in
this distribution do not allow for discerning, for instance,
single-mode quantum effects from entanglement.
Still, negativities in quasiprobabilities cover a wide range

of applications to describe how quantum effects overcome
classical limitations. For instance, they can be used to

determine the usefulness of a state for quantum information
science [14,15]. Consequently, the study of quasiprobabil-
ities is an active field of current research; see, e.g., the
recent Refs. [16–18].
To bridge the gap between quasiprobabilities and entan-

glement, the notion of an entanglement quasiprobability
(EQP) distribution has been introduced in theory [19,20].
This approach goes beyond the best approximation to a
separable state [21,22], as it allows not only for convex
mixtures but general linear combinations of separable states
to expand entangled states, defining EQPs. However, the
mathematical construction of such distributions is rather
complex [10,23]. Still, the benefit of EQPs is that neg-
ativities in them allow for a necessary and sufficient
identification of entanglement. Moreover, EQPs apply to
discrete- and continuous-variable systems as well as in
the multimode scenario beyond bipartite systems [10,24],
enabling the theoretical characterization of a manifold of
differently entangled states. Despite the theoretically pre-
dicted advantages of EQPs, to date, EQPs have not been
reconstructed in any experiment.
In this Letter, we report on the experimental reconstruc-

tion of EQPs. For this proof-of-concept demonstration, we
develop the required reconstruction algorithm and generate
entangled photon pairs. From the correlation measurement
of the polarization of the photons, we then directly obtain
the EQPs. Negativities in that distribution characterize the
entanglement of the probed state. For comparison, a sepa-
rable state is prepared and analyzed as well. Therefore,
our intuitively accessible method to visualize entanglement
elevates the versatile notion of EQPs to a practical tool to
characterize sources of quantum light in experiments.
Theory of EQPs.—By definition [25], a bipartite mixed

separable state can be written in the form

ρ̂ ¼
X

a;b

Pða; bÞja; biha; bj; ð1Þ
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using the normalized tensor-product vectors ja; bi ¼
jai ⊗ jbi. Therein, P is a classical, i.e., non-negative,
probability distribution, P ≥ 0. A state is entangled (like-
wise, inseparable) if and only if it cannot be written
according to Eq. (1). However, if we allow for P to be a
quasiprobability distribution which can take negative
values, P ≱ 0, any entangled state can be expanded as
shown in Eq. (1) as well [19,20]; see also Refs. [10,23].
A general decomposition of a state in terms of pure

separable ones is not unique, and the challenge is to find
an optimal representation [23]. Ignoring the property of
separability, we find a similar problem for the general
expansion of a single-mode density operator in terms of
pure states [10]. There, the optimal expansion is found
through the spectral decomposition which allows us to
write any state in terms of its eigenstates and non-negative
eigenvalues. Thus, the eigenvalue equation for the density
operator has to be solved. An unphysical operator, on the
other hand, has negative contributions in its spectral
decomposition. A similar approach to the spectral decom-
position can be found for composite system when including
the property of separability, leading to EQPs.
For this reason, the so-called separability eigenvalue

equations have been developed [10,23],

ρ̂bjai ¼ gjai and ρ̂ajbi ¼ gjbi; ð2Þ
where ρ̂b ¼ trB½ρ̂ð1̂A ⊗ jbihbjÞ� and ρ̂a ¼ trA½ρ̂ðjai×
haj ⊗ 1̂BÞ�, which can be further generalized to a multi-
partite system [10]. The different vectors jai; bii and values
gi that solve Eq. (2) refer to as separability eigenvectors and
separability eigenvalues, respectively. Here, i describes, in
general, a multi-index that lists the individual solutions.
The approach of coupled eigenvalue equations in Eq. (2)
also enables the construction of entanglement witnesses
[26,27]. Furthermore, the solutions allow us to expand the
state as ρ̂ ¼ P

iPðai; biÞjai; biihai; bij. In particular, all
values of the EQP, p⃗ ¼ ½Pðai; biÞ�i, are obtained from the
solution of the linear equation [10,23],

Gp⃗ ¼ g⃗; ð3Þ
using the Gram-Schmidt matrix G ¼ ðjhai; bijaj; bjij2Þi;j
and the vector g⃗ ¼ ðgjÞj of separability eigenvalues.
Most importantly, it has been proven that the presented

approach yields a non-negative p⃗ [i.e., ∀ i∶Pðai; biÞ ≥ 0]
for any separable state and includes negative entries for
any inseparable state [10]. In this sense, this technique is
optimal, and p⃗ ≱ 0 is our necessary and sufficient entan-
glement criterion. In analogy to the spectral decomposition,
the expansion of states in composite systems [cf. Eq. (1)]
can be achieved using the separability eigenvectors
[Eq. (2)] and the EQP obtained from the separability
eigenvalues [Eq. (3)].
For our purpose, we consider a two-qubit state. Any such

state can be recast into the so-called standard form to

analyze correlations using local transformations only [28].
It reads

ρ̂ðstdÞ ¼ ρ0
4
σ̂0 ⊗ σ̂0 þ

ρx
4
σ̂x ⊗ σ̂x þ

ρy
4
σ̂y ⊗ σ̂y þ

ρz
4
σ̂z ⊗ σ̂z;

ð4Þ

where σ̂x, σ̂y, and σ̂z are the Pauli matrices, completed with
the identity σ̂0; note that ρ0 ¼ 1 is the normalization.
The exact solution of the separability eigenvalue equa-

tions (2) for states in the standard form Eq. (4) has been
formulated and its EQP was subsequently determined [10].
In particular, it was shown that the state can be written as

ρ̂ðstdÞ ¼
X

w∈fx;y;zg
α;β∈fþ;−g

PðstdÞðwα; wβÞjwα; wβihwα; wβj; ð5Þ

where the exact form of PðstdÞ can be additionally found in
the Supplemental Material (SM) [29]. The separability
eigenvectors used in Eq. (5) are jw�i for both Alice’s
and Bob’s subsystem, which are the eigenvectors to the
corresponding Pauli matrices, σ̂w for w ∈ fx; y; zg. For
example, the EQP for our target state—the polarization
Bell state jψi¼ðjH;Vi− jV;HiÞ= ffiffiffi

2
p

—is shown in Fig. 1.
The distinct negativities directly visualize the entanglement
of this state.
Reconstruction algorithm for EQPs.—Let us now outline

how to obtain the EQPs. For a detailed step-by-step
description of the developed method, we refer to the SM
[29]. The first step of our reconstruction algorithm is to
apply local transformations to obtain the standard form.
Then, we use the known EQP for the standard-form state

FIG. 1. Ideal EQP of the target state jψi ¼ ðjH;Vi − jV;HiÞ=ffiffiffi
2

p
, which is given by ρx ¼ ρy ¼ ρz ¼ −1 ¼ −ρ0, cf. Eqs. (4)

and (5). The EQP P over Alice’s and Bob’s subsystems, which is
determined through the eigenstates of Pauli operators, takes
negative values to account for the presence of quantum entan-
glement, P ≱ 0.
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and apply the inverse transformations to find the EQP for
the measured state.
In the first step, we find the local operations to relate

the measured state ρ̂ with its corresponding standard
form Eq. (4),

ρ̂ðstdÞ ¼ ðT̂A ⊗ T̂BÞ−1ρ̂ðT̂†
A ⊗ T̂†

BÞ−1; ð6Þ

where T̂A ⊗ T̂B are local invertible transformations that
can be constructed [29] by adapting methods from
Refs. [28,30]. The transformations consist of rotations
and Lorentz-type operations which jointly result in the
desired standard form. It is important to stress that these
local transformations do not affect the property of a state of
being entangled or not [31].
In the second step, the known solutions of the sepa-

rability eigenvalue equations of the states ρ̂ðstdÞ are applied.
Consequently, the EQPs can be directly obtained using
the local transformations constructed by our algorithm.
Equating Eqs. (5) and (6), we find

ρ̂ ¼
X

w̄∈fx̄;ȳ;z̄g
α;β∈fþ;−g

Pðw̄α; w̄βÞjw̄α; w̄βihw̄α; w̄βj; ð7Þ

using the locally transformed distribution Pðw̄α; w̄βÞ ¼
hwαjT̂†

AT̂AjwαihwβjT̂†
BT̂BjwβiPðstdÞðwα;wβÞ together with the

normalized and transformed tensor-product states jw̄α; w̄βi ¼
T̂Ajwαi=hwαjT̂†

AT̂Ajwαi1=2⊗T̂Bjwβi=hwβjT̂†
BT̂Bjwβi1=2. Errors

are estimated via a standard Monte Carlo approach [29]. We
also emphasize that because of Eq. (7), both the state and its
entanglement are fully characterized through its EQP and the
transformed separability eigenstates. By contrast, the density
operator reconstruction alone does not directly yield the
entanglement features.
Experimental implementation.—We produce two-photon

states via parametric down-conversion in a periodically
poled titanyl phosphate waveguide in a Sagnac loop [32];
full details on the source can be found in Ref. [33]. The
source is pumped bidirectionally with 200 μW pulsed light
at 770 nm wavelength, producing polarization-entangled
photon pairs at 1540 nm. For our measurements, the source
produces 330 000 photon pairs per second in each direc-
tion, of which 59 000 per second are finally detected, with a
total detection efficiency for the signal mode of 38% and
the idler mode of 47%. We collect coincidence counts for
36 polarization measurement settings, where Alice and Bob
independently set their polarizers to horizontal, vertical,
diagonal, antidiagonal, right circular, and left circular,
corresponding to x, y, and z measurements. Collecting
data for 1 s for each setting gives us just over 1 × 106 total
coincidence counts, which we then feed into the EQP
reconstruction algorithm.
We additionally performed a maximum likelihood quan-

tum state reconstruction [34], finding an overlap with the

targeted polarization-entangled Bell state of 0.9578�
0.0004. This is consistent with the direct sampling
approach used here [29] that gives the overlap 0.958�
0.003. In addition to the entangled state, we prepared a
separable state which corresponds to the target state
ðjHi þ jViÞ= ffiffiffi

2
p

⊗ jHi. To generate this state, we pumped
the source in just one direction to produce jVi ⊗ jHi
photon pairs and then inserted a half-wave plate at 22.5° in
the signal (Alice’s) arm to rotate the first photon to the
desired superposition state.
Results.—We apply our developed reconstruction algo-

rithm to our data. The resulting EQP is depicted in Fig. 2.
The negativities demonstrate the entanglement of the
generated state with a significance of 13 standard devia-
tions. This proves that EQPs are not only a mathematical
concept, but a useful tool to experimentally characterize the
quantumness of correlations.
The EQP in Fig. 2 is in good agreement with the ideal

case; the asymmetries in Fig. 2 when compared to Fig. 1 are
a result of the rescaling due to the local transformation [see
the description of Eq. (7)]. In this context, let us stress that
our reconstruction does not correct for any imperfections.
That is, the experimentally obtained EQP (Fig. 2) includes
all impurities of the setup and still verifies the entanglement
with high significance. This further shows that EQPs can be
used to assess the high quality of our setup as a reliable
source for entangled states. Additional properties resulting
from our analysis are provided in the SM [29]. For instance,
the reconstruction density operator ρ̂ via Eq. (7), also using
the reconstructed states jw̄α; w̄βi, is confirmed by the direct
sampling approach.
Furthermore, to challenge our reconstruction procedure,

we also analyzed a separable state. In Fig. 3, the resulting
EQP is shown which does not include any negative
contribution. It is worth recalling that the employed trans-
formations can include rotations in the x-y-z space.
Interestingly, the non-negativity is a direct proof of the
state’s separability, which would require an informationally

FIG. 2. Reconstructed EQP including error bars. Significant
negativities, up to 13 standard deviations, directly certify the
quantum correlation between Alice’s and Bob’s subsystem. A
direct comparison with the ideal case is additionally provided in
the SM [29].
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complete number of other entanglement tests to rule out
entanglement for any sufficient criterion. The comparably
large error bars are a result of the fact that the mea-
sured correlation matrix is close to being noninvertible,
resulting in high fluctuations when determining the local
transformation T̂A ⊗ T̂B [cf. Eq. (6)]. A similar behavior
is found for other inversion problems when perfor-
ming reconstruction tasks; see the discussions, e.g., in
Refs. [35,36].
Discussion.—In contrast to other well-known quasiprob-

ability distributions, EQPs are developed to specifically
determine entanglement. In comparison, the Wigner func-
tion of an entangled two-mode squeezed-vacuum state is
a non-negative Gaussian distribution, while the Wigner
function of an uncorrelated product state of a single photon
and vacuum includes negativities. As such, commonly
reconstructed distributions are inconclusive when assessing
the state’s entanglement. By contrast, the significant neg-
ativities in our experimentally reconstructed EQP in Fig. 2
exclusively and unambiguously certify the generated entan-
glement in a direct manner.
The partial transposition (PT) criterion [37,38] is another

approach to uncover entanglement in a two-qubit system.
In fact, this yields a useful benchmark to independently
validate our results [29]. However, the PT fails to be a
necessary and sufficient criterion for general systems.
Beyond such a limitation, EQPs have been theoretically
proven to apply to arbitrary composite systems, including
continuous-variable [24] and multimode states [10].
Furthermore, a generalization of the standard form to qudit
systems, which is required for such a purpose, was already
discussed in Ref. [28] and enables the generalization of our
developed approach.
The general technique to obtain EQPs [cf. Eqs. (2) and

(3)] is based on the separability eigenvalue equations
[Eq. (2)]. As mentioned previously, this method also
allows for the formulation of entanglement witnesses
[26,27], which, e.g., enable the experimental detection of

complex forms of multipartite entanglement in continuous-
variable systems [39,40]. Recently, a numerical approach
to solve those equations in cases where an exact solution
is unknown has been devised as well [41]. How-
ever, identifying separability through entanglement wit-
nesses requires testing a large number of them, in contrast
to the direct criterion of the non-negativity of EQPs. In
addition to witnesses, even the entanglement dynamics of a
composite system is accessible through a time-dependent
version of the presented eigenvalue approach [42].
The inclusion of the notion of EQPs shows the univer-

sality of the method of separability eigenvalue equations as
well as its robustness. In this context, the usefulness of
EQPs in theoretical studies has also been exemplified
for NOON states propagating in atmospheric loss channels
[43], two-mode squeezed states under the influence of
dephasing [24], and multipartite bound-entangled states
(inaccessible with the PT criterion) [10]. Here, we comple-
ment this versatile theory with its experimental realization.
Summary.—We developed a reconstruction algorithm

that renders it possible to experimentally apply the notion
of entanglement quasiprobabilities, providing the missing
link between the theory of EQPs and its experimental
implementation. With this approach, we verified the entan-
glement of a two-mode polarization state—the basis for
many quantum information protocols—which is not pos-
sible with other well-known quasiproabilities but was
theoretically predicted two decades ago [19]. Similarly
to the spectral decomposition of physical density operators,
the solutions of the separability eigenvalue equations
enable the expansion of any separable state in terms of a
classical joint distribution. We confirmed this by producing
and probing a separable state, which additionally over-
comes the so-called separability problem that aims at
certifying that a state is indeed separable. Conversely,
entanglement is unambiguously verified through negativ-
ities in the EQP distribution. Here, this versatile, necessary,
and sufficient theory was used to assess separability and
inseparability experimentally, which has not been done
before. By developing a reconstruction technique for
EQPs, we were able to certify and visualize entanglement
through the negativities in the EQP with high statistical
significance. This was achieved without correcting for
experimental imperfections. Therefore, we implemented
a previously inaccessible and intuitive method to exper-
imentally uncover entanglement for future applications in
quantum technologies.
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group acknowledges financial support from European
Commission with the ERC project QuPoPCoRN
(No. 725366) and from the Gottfried Wilhelm Leibniz-
Preis (Grant No. SI1115/3-1).

FIG. 3. Reconstruction for a separable target state ðjHi þ jViÞ=ffiffiffi
2

p
⊗ jHi. Without requiring additional testing, it is directly

evident that the produced state is separable, P ≥ 0. The compa-
rably large error bars are a result of the involved matrix inversion
[Eq. (6)].
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