
 

Detecting and Characterizing the Nonadiabaticity of Laser-Induced Quantum Tunneling

Kunlong Liu,1,2 Siqiang Luo,1 Min Li,1,* Yang Li,1 Yudi Feng,1 Baojie Du,1 Yueming Zhou,1

Peixiang Lu,1,3,† and Ingo Barth2,‡
1Wuhan National Laboratory for Optoelectronics and School of Physics,
Huazhong University of Science and Technology, Wuhan 430074, China

2Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Saale), Germany
3Hubei Key Laboratory of Optical Information and Pattern Recognition,

Wuhan Institute of Technology, Wuhan 430205, China

(Received 27 August 2018; published 8 February 2019)

The nonadiabaticity of quantum tunneling through an evolving barrier is relevant to resolving laser-
driven dynamics of atoms and molecules at an attosecond timescale. Here, we propose and demonstrate a
novel scheme to detect the nonadiabatic behavior of tunnel ionization studied in an attoclock configuration,
without counting on the laser intensity calibration or the modeling of the Coulomb effect. In our scheme,
the degree of nonadiabaticity for tunneling scenarios in elliptically polarized laser fields can be steered
continuously simply with the pulse ellipticity, while the critical instantaneous vector potentials remain
identical. We observe the characteristic feature of the measured photoelectron momentum distributions,
which matches the distinctive prediction of nonadiabatic theories. In particular, our experiments
demonstrate that the nonadiabatic initial transverse momentum at the tunnel exit is approximately
proportional to the instantaneous effective Keldysh parameters in the tunneling regime, as predicted
theoretically by Ohmi, Tolstikhin, and Morishita [Phys. Rev. A 92, 043402 (2015)]. Our study clarifies a
long-standing controversy over the validation of the adiabatic approximation and will substantially advance
studies of laser-induced ultrafast dynamics in experiments.
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Tunneling is one of the most important mechanisms for
ionization of atoms and molecules by strong laser fields,
where the bound electron penetrates the barrier formed
by the Coulomb field and the electric field [1]. However,
instead of being static, the near-infrared laser field
oscillates periodically (∼2.6 fs per optical cycle, typi-
cally), resulting in a time-dependent barrier and thus
making the tunneling a rather intricate process [2]. The
“nonadiabaticity” of the tunneling process has attracted
great attention in the past decades [3–5], as it is of vital
importance in interpreting the ultrafast phenomena fol-
lowing tunnel ionization [6].
The degree of nonadiabaticity for strong-field tunneling

is usually characterized by the Keldysh parameter γ ¼
ðω=EÞ ffiffiffiffiffiffiffi

2Ip
p

[1–3], where Ip is the ionization potential, E
the field strength amplitude, and ω the frequency of the
electric field. In general, the condition γ ≪ 1 is considered
as the adiabatic limit, whereas the typical condition in the
laboratory lies in the regime γ ∼ 1 where the nonadiabatic
tunnel ionization occurs. The validation of the adiabatic
approximation for strong-field tunnel ionization in atto-
clock experiments [7] have been widely debated. Though
the nonadiabatic effects have been predicted by different
theoretical models [1–5,8–16], the conclusions so far from
various experimental studies [17–22] are seemingly contra-
dictory. In particular, Arissian et al. [17] found no evidence

of nonadiabatic effects by measuring the momentum dis-
tribution of photoelectrons along the laser propagation
direction, and Boge et al. [18] claimed that nonadiabatic
theories contradict the experimental trends of the tilted angles
of the photoelectron momentum distributions (PMDs) in
attoclock measurements, while Eckart et al. [20] recently
showed evidence of nonadiabatic effects using bicircularly
polarized laser pulses.
The experimental tests of nonadiabatic effects are mostly

based on the mapping relation between the initial photo-
electron momentum and the measured final photoelectron
momentum. In the nonadiabatic tunneling picture of atoms
(see Fig. 1), the measurable final momentum pf is a
function of three variables: the initial transverse momentum
p0 that depends on the instantaneous angular frequency and
strength of the electric field (theoretical prediction in
Ref. [5]), the negative of the instantaneous vector potential
pA ¼ −AðtÞ determined by the laser intensity, and the
accumulated momentum drift pC caused by the Coulomb
effect, i.e.,

pf ¼ fðp0;pA;pCÞ ¼ p0 þ pA þ pC: ð1Þ

Generally, the predicted nonadiabatic momentum offset p0

is rather small. The long-standing obstacle to experimen-
tally investigating p0 is the accurate determination of pA
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and pC. In previous experimental studies [17–20], calibrat-
ing the pulse intensity (for pA) [17,18] or calculating the
Coulomb effect (for pC) [19,20] relies on the theoretical
models that themselves need independent experimental
demonstrations in the first place. Thus, controversial even
conflicting conclusions would be made if pA and pC are
obtained from various theoretical models. Moreover, it is
still challenging to identify the boundary when the adia-
batic approximation holds or breaks down.
Key to overcoming the difficulty of determining pA and

pC is a feasible way to continuously steer the degree of
nonadiabaticity at the concerned tunneling events while
(i) the corresponding instantaneous vector potentials
remain identical and (ii) the Coulomb effect is mechan-
ically distinguished from the nonadiabatic effect. Then, we
will be able to single out the relation between pf and p0

independently from the measurements. In this Letter, we
design a scheme to achieve this goal and characterize the
nonadiabaticity of the tunnel ionization in elliptically
polarized (EP) fields via the observable PMDs.
The idea is illustrated in Fig. 2. The right EP field is given

by EðtÞ ¼ Ex cosðωtÞex þ Ey sinðωtÞey. In our scheme, the
field amplitude along the x direction is fixed (Ex ≡ E),
whereas Ey is variable. Throughout the present study, the

ellipticity ϵ is defined as ϵ ¼ Ey=Ex, and it could be smaller
or larger than 1. The corresponding negative vector potential
is given by−AðtÞ ¼ A sinðωtÞex − ϵA cosðωtÞey withA ¼
E=ω. In particular, as shown in Fig. 2(a), at t ¼ t0 ¼
ðπ=2Þð1=ωÞ, where Eðt0Þ ¼ ϵEey, the instantaneous field
strength and the instantaneous angular frequency are Ei ¼ ϵE
and ωi ¼ ω=ϵ, respectively [23]. Accordingly, we define the
instantaneous effective Keldysh parameter at t ¼ t0 as
γi ¼ ðωi=EiÞ

ffiffiffiffiffiffiffi
2Ip

p ¼ ½ω=ðϵ2EÞ� ffiffiffiffiffiffiffi
2Ip

p ¼ ð1=ϵ2Þγ, which
can be changed continuously via adjusting the ellipticity ϵ.
Meanwhile, the corresponding negative vector potential given
by −Aðt0Þ ¼ Aex remains identical for arbitrary ϵ, as
indicated in Figs. 2(b) and 2(c). Note that the critical vector
potential marked by the solid triangle is maximal if ϵ < 1 and
minimal if ϵ > 1.
Next, let us look into the tunneling scenarios at t ¼ t0.

For simplicity, two cases for different ellipticities (ϵs <
1 < ϵl) are discussed. In the adiabatic frame without
considering the Coulomb effect, the maximal final photo-
electron momentum drift for ϵs and the minimal one for ϵl
would satisfy jpf;sjmax ¼ jpf;ljmin because of the identical
vector potentials [see Fig. 2(c)]. In the further situation
where the Coulomb effect is included, the centripetal
Coulomb attraction decelerates the photoelectron [24].
Given that the overall field strength for ϵs is not greater
than that for the relatively larger ellipticity ϵl [see Fig. 2(a)],
the Coulomb effect is more significant for ϵs, as the
photoelectron is less energetic and spends more time interact-
ing with the ion. Thus, under the adiabatic assumption, the
phenomenon jpf;sjmax < jpf;ljmin is expected. On the other
hand, however, the nonadiabatic effect would cause a nonzero
initial momentum of the photoelectron. According to the
first-order nonadiabatic correction in the adiabatic theory [5],
the final momentum drift for t ¼ t0 can be expressed as
(neglecting the Coulomb effect) [25]

jpfj ¼ px ¼ Aþ
ffiffiffiffiffiffiffi
2Ip

p
6

γi; ð2Þ

where the term ð ffiffiffiffiffiffiffi
2Ip

p
=6Þγi is the initial transverse momen-

tum arising from the nonadiabaticity of tunneling. Since
γi ¼ ð1=ϵ2Þγ, the larger ϵ, the smaller γi, and, consequently,
the smaller is the initial transverse momentum at the tunnel
exit and vice versa. Because of the fixed A in our scheme,
jpf;sjmax > jpf;ljmin should be observed according to the
nonadiabatic tunneling picture. Therefore, within our scheme,
the nonadiabatic effect acts against the Coulomb effect on the
final photoelectronmomentumdrift. The characteristic feature
of the observable momentum drifts for different ellipticities
will be a direct test of the nonadiabatic effect,without counting
on the calibration of the laser intensity or the theoretical
modeling of the Coulomb effect.
Based on the scheme described above, we measured

the PMDs for Ne atoms using a cold target recoil ion
momentum spectroscopy (COLTRIMS). The laser pulses

FIG. 1. The physical picture of the nonadiabatic tunnel ioniza-
tion of atoms driven by rotating laser fields. See text for details.

(a) (b) (c)

FIG. 2. The electric fields and vector potentials for ϵl > 1
(thick), ϵ ¼ 1 (dashed), and ϵs < 1 (thin). The hollow triangles in
(a) indicate three scenarios where ionization takes place. Their
corresponding vector potentials are identical, as shown by solid
triangles in (b) and (c).
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were generated by an amplified Ti:sapphire femtosecond
laser system with a repetition rate of 5 kHz centered at
800 nm. The pulse duration was approximately 40 fs. We
used a wire grid polarizer before a λ=4wave plate to control
the polarization ellipse of the laser pulse. The fast axis of
the λ=4 wave plate was fixed along the x direction. Before
each acquisition of experimental data, we adjusted the total
input pulse intensity and used a second wire grid polarizer
to check and ensure that the component of the pulse intensity
along the x axis was constant for varying ellipticities. The
laser pulse was then focused into the supersonic beam in
the main chamber of the COLTRIMS system by a parabolic
mirror (f ¼ 75 mm). A uniformed electric field about
41 V=cm and a uniformed magnetic field about 19 G were
used to collect the photoelectrons and photoions. The three-
dimensional momenta of the electrons and ions were
reconstructed from the time of flights and the positions of
the particles on the detectors.
The measured PMDs for ϵs ¼ 0.86 and ϵl ¼ 1.40 are

shown in Figs. 3(a) and 3(b), respectively, corresponding
to the total pulse intensities of approximately 0.38 and
0.65 PW=cm2. The tilted angles of the two-lobe structures
with respect to the laser ellipse are mainly contributed
by the Coulomb attraction [7,12] and, possibly, the non-
adiabatic effect [5]. To obtain the momentum drift as a
function of the emission angle φ, we show the corre-
sponding momentum-resolved photoelectron angular dis-
tributions (PADs) in Figs. 3(c) and 3(d). The PADs are
normalized to the maximal yields at each angle since
we are interested in the momentum drift instead of the
instantaneous ionization rate. For comparison, we have
also performed numerical simulations based on the time-
dependent Schrödinger equation (TDSE) for Ne [26]. The
simulated results [27] for E ¼ 0.079 a:u: and the same
ellipticities as in experiments are shown in Figs. 3(e) and
3(f). The simulated PADs exhibit very good agreement with
those observed in experiments. As indicated by the dashed

circles in Figs. 3(d) and 3(e), the crossings between the
two curves mean that the maximal momentum drift for ϵs is
larger than the minimal one for ϵl, i.e., jpf;sjmax > jpf;ljmin.
Following the scheme described above via Fig. 2, it
demonstrates that two distinct nonzero initial momenta
are caused by the nonadiabatic effect and that the adiabatic
approximation breaks down. Note that the conclusion here
does not rely on the specification of the intensity used in
the simulations. Here, the observed crossing structure can
be intuitively explained within the adiabatic theory [4,5].
According to Eq. (2), since γi;s=γi;l ¼ ϵ2l =ϵ

2
s > 1, a larger

nonadiabatic initial transverse momentum for ϵs would be
added to the fixed critical vector potential (see Fig. 2).
Eventually, it leads to a larger final momentum drift for ϵs
than that for ϵl at φ ≈ 0 and φ ≈ π.
For further understanding of the underlying mechanism

when the Coulomb effect is included, we perform the
classical trajectory Monte Carlo (CTMC) simulations [19]
using the same laser parameters as in the TDSE simula-
tions. In the CTMC models, the initial coordinates of the
tunneled electron are given by either the ADK theory [28]
(adiabatic approximation) or the nonadiabatic theory based
on the strong-field approximation (SFA) [29,30]. Starting
with the initial coordinates, i.e., the tunnel exit and the
initial momentum distributions, we calculate the PMDs by
numerically solving the classical Newtonian equation with
consideration of the Coulomb potential [19]. Figure 4
presents the momentum drifts obtained from the experimen-
tal data and from the results basedon thenonadiabaticCTMC
model with the Coulomb effect, as well as on the adiabatic
CTMC models without or with the Coulomb effect.
Figures 4(a)–4(c) show that, within our experimental

scheme, the predictions of various theoretical models differ
from each other. In particular, the models based on the
nonadiabatic theory and the adiabatic approximation (with-
out or with the Coulomb effect) show distinctive observable
features of the momentum drifts, i.e., crossing, cutting, and

FIG. 3. The PMDs [(a) and (b)] and normalized momentum-resolved PADs [(c)–(f)] for ϵs ¼ 0.86 and ϵl ¼ 1.40 obtained from
experiments and TDSE simulations. The photoelectron momentum drift as a function of the emission angle for ϵs and ϵl is shown by
solid and dash-dotted curves, respectively. The distinct momentum drifts at φ ≈ π (and φ ≈ 0) for two ellipticities are evidence for the
nonadiabatic tunnel ionization.
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departing, respectively. Therefore, by measuring the PMDs
and comparing the observed feature with the predictions,
one can determine which model is more accurate. Since
the measurements shown in Fig. 4(a) match the crossing
structure, we can conclude that the nonadiabatic effect
certainly plays an indispensable role in laser-induced tun-
neling dynamics. Moreover, one can find that the crossing
structures of the experimental observations and the non-
adiabatic CTMC simulations agree with the prediction of
Eq. (2) from the adiabatic theory [5].
Last but not least, we inspect the validation of adiabatic

approximation over a range of the instantaneous effective
Keldysh parameters γi via changing the ellipticity within
our scheme. In Fig. 5, we depict the final momentum drift as
a function of the ellipticity and the corresponding instanta-
neous effective Keldysh parameter γi. The results are
extracted from the PADs at φ ¼ π based on experiments,
TDSE simulations, and the nonadiabatic and adiabatic
CTMC simulations with the Coulomb effect. The momen-
tum drifts given by the adiabatic theory [5], as well as those
within the adiabatic approximation, are also shown in Fig. 5.
The field strength amplitude E ¼ 0.079 a:u: is applied for
all theoretical methods. The range of ellipticity from 1.51 to
0.64 corresponds to the instantaneous effective Keldysh
parameter ranging from 0.4 to 2.2 and to the instantaneous
field strength from 0.12 to 0.05 a.u.
One can see from Fig. 5 that, within the adiabatic CTMC

simulations, the critical final momentum drift decreases

with the increasing γi due to the enhancing Coulomb effect.
In contrast, the momentum drifts observed in experiments
exhibit the tendency to increase with increasing γi, and
the theoretical models which include the nonadiabatic
effect reproduce the coinciding phenomenon. Given that
the critical vector potential is identical for arbitrary ellip-
ticity, the observation shown in Fig. 5 proves that the initial
transverse momentum induced by the nonadiabatic effect
is approximately proportional to γi in the regime of γi ∼ 1.
For comparison, we further derive an analytic expression

for the momentum drift based on the SFA [29,30] for the
present scheme. The transition rate from the ground state to
the continuum state p can be calculated within exponential
accuracyW ∝ expð−2 Im SÞ, whereS¼1

2

R ti
0 ½pþAðt0Þ�2dt0 þ

Ipti is the action under the barrier, ti ¼ t0 þ iτ is the complex
ionization time (also referred to as the solution of the saddle-
point equation) that can be interpreted as the time of entering
into the barrier, t0 ¼ Re ti is the time of exiting the barrier,
and τ ¼ Im ti is the tunneling time [31,32]. By deriving the
imaginary part of the action, one can eventually obtain the
most probable final drift momentum

px ¼
E
ω

sinhðωτÞ
ωτ

; ð3Þ
where the tunneling time τ satisfies the transcendental
equation

sinh2ðωτÞ
�
ϵ2 −

�
cothðωτÞ − 1

ωτ

�
2
�
¼ γ2: ð4Þ

The associated initial transverse momentum can be calcu-
lated by vx ¼ px −A. The nonadiabatic model introduced
above is valid for the tunneling occurring along the major
and minor axes of the laser ellipse. By expanding the
momentum drift in Eq. (3) in Taylor series with respect to
the instantaneous effective Keldysh parameter, we obtain
the analytical expression for the momentum drift (up to the
third order) [25]

(a)

(b) (c)

FIG. 4. The angular dependence of the photoelectron momen-
tum drift obtained from (a) experimental measurements (markers)
and simulations based on the nonadiabatic CTMC model (solid
lines) with the Coulomb effect, as well as on the adiabatic CTMC
models (b) without and (c) with the Coulomb effect. In these three
models, the curves for ϵs and ϵl exhibit distinctive relations:
crossing, cutting, and departing, respectively.

FIG. 5. The dependence of the final photoelectron momentum
drift on the ellipticity and the instantaneous effective Keldysh
parameter γi based on different methods. See text for details.

PHYSICAL REVIEW LETTERS 122, 053202 (2019)

053202-4



px ¼
E
ω
þ

ffiffiffiffiffiffiffi
2Ip

p
6

γi þ
ffiffiffiffiffiffiffi
2Ip

p
6

�
1

9
−
17

60
ϵ2
�
γ3i : ð5Þ

One can find that the first-order term in Eq. (5) is the same
as that in Eq. (2). The results obtained from Eqs. (3) and (5)
(solid and dotted curves, respectively) depicted in Fig. 5
agree with the trend of the measurements. It clearly
demonstrates the nonadiabatic behavior of tunnel ioniza-
tion in rotating fields.
Moreover, we find in Fig. 5 that the nonadiabatic

momentum offset is still not negligible even for the
Keldysh parameters as low as 0.4, where the instantaneous
field strength and the angular frequency correspond to a
1200-nm circularly polarized laser pulse with the pulse
intensity of 1015 W=cm2. It suggests that, in general, the
adiabatic approximation for tunnel ionization in a rotating
field is inaccurate under the typical conditions in the
laboratory.
In conclusion, we have demonstrated an experimental

scheme which reveals the nonadiabaticity of strong-field
tunnel ionization, without counting on the laser intensity
calibration. The scheme also mechanically distinguishes
the nonadiabatic effect from the Coulomb effect on photo-
electrons. As the characteristic feature of the nonadiabatic
effect on the tunneling electron, the observed crossing
structure in Fig. 4(a) demonstrates straightforwardly and
unambiguously the association of the initial transverse
momentum of the tunneling electronic wave packet with
the instantaneous effective Keldysh parameter in EP laser
fields. The present study will help refine experimental
observations in the future and has significant implications
in the appealing strong-field phenomena which are trig-
gered by tunnel ionization in rotating laser fields, e.g.,
elliptically polarized high-harmonic generation [33], non-
sequential double ionization [34], spin polarization [35],
and photoelectron holography [36].

Financial support from the National Natural Science
Foundation of China (Grants No. 11627809,
No. 11674116, No. 11722432, and No. 61475055), the
Max Planck Society for the Max Planck Research Group
“Current-Carrying Quantum Dynamics,” the Deutsche
Forschungsgemeinschaft, Priority Programme 1840
“Quantum Dynamics in Tailored Intense Fields,” and the
Program for HUST Academic Frontier Youth Team are
acknowledged.

K. L. and S. L. contributed equally to this work.

*mli@hust.edu.cn
†lupeixiang@hust.edu.cn
‡barth@mpi-halle.mpg.de

[1] M. Y. Ivanov, M. Spanner, and O. Smirnova, J. Mod. Opt.
52, 165 (2005).

[2] A.M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov.
Phys. JETP 23, 924 (1966); 24, 207 (1967); A.M. Perelomov
and V. S. Popov, Sov. Phys. JETP 25, 336 (1967).

[3] S. V. Popruzhenko, J. Phys. B 47, 204001 (2014).
[4] O. I. Tolstikhin and T. Morishita, Phys. Rev. A 86, 043417

(2012).
[5] M. Ohmi, O. I. Tolstikhin, and T. Morishita, Phys. Rev. A

92, 043402 (2015).
[6] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163

(2009).
[7] P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner,

H. G. Muller, M. Büttiker, and U. Keller, Science 322, 1525
(2008).

[8] D. I. Bondar, Phys. Rev. A 78, 015405 (2008).
[9] K. Liu and I. Barth, Phys. Rev. A 94, 043402 (2016).

[10] J. Henkel, M. Lein, V. Engel, and I. Dreissigacker, Phys.
Rev. A 85, 021402(R) (2012).

[11] J.-W. Geng, W.-H. Xiong, X.-R. Xiao, L.-Y. Peng, and Q.
Gong, Phys. Rev. Lett. 115, 193001 (2015).

[12] L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, A.
Zielinski, A. Scrinzi, H. G. Muller, S. Sukiasyan, M. Ivanov,
and O. Smirnova, Nat. Phys. 11, 503 (2015).

[13] C. Hofmann, T. Zimmermann, A. Zielinski, and A. S.
Landsman, New J. Phys. 18, 043011 (2016).

[14] H. Ni, U. Saalmann, and J.-M. Rost, Phys. Rev. Lett. 117,
023002 (2016).

[15] M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, Phys.
Rev. Lett. 114, 083001 (2015).

[16] K. Liu, H. Ni, K. Renziehausen, J.-M. Rost, and I. Barth,
Phys. Rev. Lett. 121, 203201 (2018).

[17] L. Arissian, C. Smeenk, F. Turner, C. Trallero, A. V.
Sokolov, D. M. Villeneuve, A. Staudte, and P. B. Corkum,
Phys. Rev. Lett. 105, 133002 (2010).

[18] R. Boge, C. Cirelli, A. S. Landsman, S. Heuser, A. Ludwig,
J. Maurer, M. Weger, L. Gallmann, and U. Keller, Phys.
Rev. Lett. 111, 103003 (2013).

[19] M. Li, M.-M. Liu, J.-W. Geng, M. Han, X. Sun, Y. Shao, Y.
Deng, C. Wu, L. Y. Peng, Q. Gong, and Y. Liu, Phys. Rev. A
95, 053425 (2017).

[20] S. Eckart, K. Fehre, N. Eicke, A. Hartung, J. Rist, D.
Trabert, N. Strenger, A. Pier, L. Ph. H. Schmidt, T. Jahnke,
M. S. Schöffler, M. Lein, M. Kunitski, and R. Dörner, Phys.
Rev. Lett. 121, 163202 (2018).

[21] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S.
Patchkovskii, M. Y. Ivanov, O. Smirnova, and N. Dudovich,
Nature (London) 485, 343 (2012).

[22] N. Camus, E. Yakaboylu, L. Fechner, M. Klaiber, M. Laux,
Y. Mi, K. Z. Hatsagortsyan, T. Pfeifer, C. H. Keitel, and R.
Moshammer, Phys. Rev. Lett. 119, 023201 (2017).

[23] The instantaneous angular velocity ωi for the elliptically
polarized laser field is calculated as ωi ¼ ∂φi=∂t ¼
ϵωðE=EiÞ2, where φi is the direction of EðtÞ and Ei ¼
jEðtÞj is the instantaneous field amplitude. Therefore, for
t¼t0¼ðπ=2Þð1=ωÞ, we have Ei ¼ ϵE and, thus, ωi ¼ ω=ϵ.

[24] K. Liu and I. Barth, Phys. Rev. Lett. 119, 243204 (2017).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.053202 for the de-
tails of the adiabatic theory and the nonadiabatic model for
the photoelectron momentum in elliptically polarized laser
fields.

PHYSICAL REVIEW LETTERS 122, 053202 (2019)

053202-5

https://doi.org/10.1080/0950034042000275360
https://doi.org/10.1080/0950034042000275360
https://doi.org/10.1088/0953-4075/47/20/204001
https://doi.org/10.1103/PhysRevA.86.043417
https://doi.org/10.1103/PhysRevA.86.043417
https://doi.org/10.1103/PhysRevA.92.043402
https://doi.org/10.1103/PhysRevA.92.043402
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1126/science.1163439
https://doi.org/10.1126/science.1163439
https://doi.org/10.1103/PhysRevA.78.015405
https://doi.org/10.1103/PhysRevA.94.043402
https://doi.org/10.1103/PhysRevA.85.021402
https://doi.org/10.1103/PhysRevA.85.021402
https://doi.org/10.1103/PhysRevLett.115.193001
https://doi.org/10.1038/nphys3340
https://doi.org/10.1088/1367-2630/18/4/043011
https://doi.org/10.1103/PhysRevLett.117.023002
https://doi.org/10.1103/PhysRevLett.117.023002
https://doi.org/10.1103/PhysRevLett.114.083001
https://doi.org/10.1103/PhysRevLett.114.083001
https://doi.org/10.1103/PhysRevLett.121.203201
https://doi.org/10.1103/PhysRevLett.105.133002
https://doi.org/10.1103/PhysRevLett.111.103003
https://doi.org/10.1103/PhysRevLett.111.103003
https://doi.org/10.1103/PhysRevA.95.053425
https://doi.org/10.1103/PhysRevA.95.053425
https://doi.org/10.1103/PhysRevLett.121.163202
https://doi.org/10.1103/PhysRevLett.121.163202
https://doi.org/10.1038/nature11025
https://doi.org/10.1103/PhysRevLett.119.023201
https://doi.org/10.1103/PhysRevLett.119.243204
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.053202
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.053202
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.053202
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.053202
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.053202
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.053202
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.053202


[26] I. Barth and M. Lein, J. Phys. B 47, 204016 (2014).
[27] The electric field for numerical simulations is defined as

EðtÞ ¼ fðtÞE½cosðωtþ ϕCEÞex þ ϵ sinðωtþ ϕCEÞey� with
fðtÞ ¼ sin2ðωt=8Þ, where ϕCE is the carrier-envelope phase
ranging from 0 to 2π with the step of π=16 in our
calculations. All numerical results have been averaged over
ϕCE and initial states for 2pþ and 2p− orbitals.

[28] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov.
Phys. JETP 64, 1191 (1986).

[29] P. Salieres et al., Science 292, 902 (2001).
[30] W. Becker, F. Grasbon, D. Kopold, D. B. Milošević, G. G.

Paulus, and H. Walther, Adv. At. Mol. Opt. Phys. 48, 35
(2002).

[31] I. Barth and O. Smirnova, Phys. Rev. A 87, 013433 (2013).
[32] J. Tan, Y. Zhou, M. He, Y. Chen, Q. Ke, J. Liang, X. Zhu,

M. Li, and P. Lu, Phys. Rev. Lett. 121, 253203 (2018).
[33] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Cohen,

Nat. Photonics 8, 543 (2014).
[34] H. Kang, K. Henrichs, M. Kunitski, Y. Wang, X. Hao, K.

Fehre, A. Czasch, S. Eckart, L. P. H. Schmidt, M. Schöffler,
T. Jahnke, X. Liu, and R. Dörner, Phys. Rev. Lett. 120,
223204 (2018).

[35] K. Liu, K. Renziehausen, and I. Barth, Phys. Rev. A 95,
063410 (2017).

[36] Y. Li, Y. Zhou, M. He, M. Li, and P. Lu, Opt. Express 24,
23697 (2016).

PHYSICAL REVIEW LETTERS 122, 053202 (2019)

053202-6

https://doi.org/10.1088/0953-4075/47/20/204016
https://doi.org/10.1126/science.108836
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1103/PhysRevA.87.013433
https://doi.org/10.1103/PhysRevLett.121.253203
https://doi.org/10.1038/nphoton.2014.108
https://doi.org/10.1103/PhysRevLett.120.223204
https://doi.org/10.1103/PhysRevLett.120.223204
https://doi.org/10.1103/PhysRevA.95.063410
https://doi.org/10.1103/PhysRevA.95.063410
https://doi.org/10.1364/OE.24.023697
https://doi.org/10.1364/OE.24.023697

