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We study an ultracold atomic gas with attractive interactions in a one-dimensional optical lattice. We find
that its excitation spectrum displays a quantum soliton band, corresponding to N-particle bound states, and
a continuum band of other, mostly extended, states. For a system of a finite size, the two branches are
degenerate in energy for weak interactions, while a gap opens above a threshold value of the interaction
strength. We find that the interplay between degenerate extended and bound states has important
consequences for both static and dynamical properties of the system. In particular, the solitonic states turn
out to be protected from spatial perturbations and random disorder. We discuss how such dynamics implies
that our system effectively provides an example of a quantum many-body system that, with the variation of
the bosonic lattice filling, crosses over from integrable nonergodic to nonintegrable ergodic dynamics,
through nonintegrable-nonergodic regimes.
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Introduction and summary of the results.—Solitary
waves in classical fluids may arise when wave dispersion
effects are compensated by nonlinear interactions [1]. The
study of their mathematical properties has defined impor-
tant areas in mathematical research [2–4], with far reaching
implications for pure and applied modern science [5–9].
Although quantum mechanics is an intrinsically linear
theory, solitons may emerge also in quantum fluids: in this
case, nonlinearities arise as a result of effective cooperative
phenomena occurring in quantum-many-particle systems.
Indeed, solitons were demonstrated to emerge in different
quantum-mechanical contexts, ranging from quantum
material science to particle physics [10–15].
In this work, we are primarily motivated by the recent

investigations in quantum fluids as provided by ultracold
atoms trapped in one-dimensional optical potentials. In
these systems, bright solitons may emerge for attractive
atom-atom interactions [3] (see also Ref. [16]) and they
have been observed in several experiments [17–20]. From a
conceptual point of view, however, bosonic systems with
attractive interactions must be treated with care: because of
the Bose statistics, the lowest energy state can be macro-
scopically occupied with a density that is magnified by
interactions. Important progress has been achieved describ-
ing the bosonic fluid through a famous integrable theory as
proposed by the Lieb-Liniger model, which is amenable to

an exact analysis [21]. Relying on that, it was demonstrated
that the ground state energy may display instabilities that
can be nonetheless cured by a suitable choice of inter-
actions and density [22]. Indeed, the limits of vanishing
interaction with a finite density, leading to mean-field
results for a large number of bosons [23], or of vanishing
density with finite interactions [24], have been thoroughly
explored. In particular, by analyzing the solutions of the
mean-field Gross-Pitaevskii equation it was found [25,26]
that a critical value of the attraction exists for which the
ground state density undergoes to a transition from a
uniform profile to a bright-soliton-type one (as implied
by the onset of modulational instabilities in the conden-
sate). In the same limit, it was exactly demonstrated using
the Bethe-ansatz solution that density-density and higher-
order correlation functions display a qualitative change of
behavior in correspondence to the critical value predicted
by the mean-field theory.
In this work we focus on a bosonic system described

by the Bose-Hubbard model (BHM) [27,28] (1) confined in
a one-dimensional lattice, where density and interactions
strength are both finite. We perform a numerical study of
energy bands and quantum correlations using the density
matrix renormalization group (DMRG) method [29–33].
Among different aspects implied by the lattice, here we
exploit the energy-band structure of the system, featuring
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characteristic bendings, foldings, and energy gaps. Such
effects can indeed define new physical regimes in our
system with peculiar bound states of solitonic type (see
Refs. [34–36]).
For finite attractive interactions we find that N-body

bound states are formed; for weak interactions, however,
these bound states are degenerate with a second band of
other states, mostly extended or involving lower-order
bound states. By increasing the interaction strength, the
bound states get more and more energetically favorable,
until a critical interaction strength Uc for which the band of
bound states is completely separated by an energy gap from
the rest of the spectrum.
The calculation of the dynamical structure factor, which

is defined below by Eq. (2), provides the portrait of the
band structure of the system, displaying a two-branch
dispersion at low energies as shown in Fig. 1. Such quantity
is experimentally detectable by means in ultracold-atom
experiments by Bragg scattering methods [37,38]. We
characterize the nature of ground and excited states in
the spectrum by monitoring the density-density correlations
functions, which display a different spatial behavior for
extended and N-particle bound states, see Fig. 2.
The changing of band structure and the opening of a gap,

which follows the variation of the interaction, has important
consequences for the dynamics of the system. We devise a
protocol inwhichwe prepare a quantum soliton in themiddle
of the chain and then we let it expand under the guidance of
Hamiltonian (1). For U ¼ 0 only extended states are natu-
rally available in thedynamics; for 0 < U < Uc the extended
and bound states are available; for U > Uc, at low energies,

solely bound states exist. As a striking feature, in this latter
regime the density keeps more and more the localized shape
of the initial state and only a small fraction of the state spreads
over the lattice. The crossover between the two regimes is
purely mesoscopic since Uc scales like the inverse of the
number of particles (see Supplemental Material [41]). We
note that the expansion velocity experiences a crossover
from a large value forU < Uc to a smaller value forU > Uc.
These features, that have been predicted for two particles
[39], clearly emerge inFig. 4. Even thoughnoquantumphase
transition occurs in the system, we find that the expansion
velocity close to Uc displays a universal scaling. Such a
feature illustrates the subtle interplay between interactions
and particle number in the dynamics of attractive bosons in a
lattice.
We also find that the occurrence of degenerate scattering

and bound states in the spectrum implies nontrivial time
evolution of correlations: the large-distance asymptotic
density-density correlations are not a function solely of
the energy, but they strongly depend on the choice of the
initial state. Indeed, not even a random perturbation is able
to turn the time asymptotics of solitonic bound states into
those of scattering states, see Fig. 3. Such a result indicates

(a) (b)

(c) (d)

FIG. 1. Dynamical structure factor Sðk;ωÞ for a chain of L ¼
30 sites. Upper row: analytical results for N ¼ 2 particles for
U ¼ 2 < Uc (a) and U ¼ 5 > Uc (b). The black lines, obtained
from the exact solution for N ¼ 2, outline two bands of bound
(lower) and scattering (upper) states [39,40]. Lower row: Sðk;ωÞ,
numerical results for N ¼ 5 particles. In panels (c) and (d) inter-
action are set toU ¼ 0.75 < Uc and U ¼ 1.2 > Uc, respectively.

(a) (b)

FIG. 2. Density-density correlation function CðrÞ for N ¼ 5
particles in a chain of L ¼ 61 sites. Panel (a): CðrÞ for the ground
state as a function of U. Inset: the correlation length ξ. Panel (b):
CðrÞ calculated over several excited states for U ¼ 0.6 < Uc, i
labels the ith excited state (i ¼ 0 correspond to the ground state)
for a chain of L ¼ 30 sites.

(a) (b)

FIG. 3. Panel (a): expectation of CLD for several eigenstates ϕn
as a function of their energy E, for N ¼ 5 particles in a chain of
L ¼ 21 sites. Interaction is set toU ¼ 0.5 < Uc. The black line at
CLD ¼ ðN=LÞ2 ≈ 0.056 is a guide to the eye. Panel (b): time
evolution of CLD, from scattering or bound state with adjacent
energy eigenvalues.
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that bright solitons in the lattice are robust to external
perturbations. This specific lack of ergodicity has impli-
cations at a fundamental level to study the interplay
between thermalization and integrability, see Fig. 5.
The model.—We employ the BHM describing N inter-

acting bosons in a one-dimensional lattice. The
Hamiltonian reads

Ĥ ¼ −J
XL

j¼1

ða†jajþ1 þ h:c:Þ −U
2

XL

j¼1

n̂jðn̂j − 1Þ; ð1Þ

where the operators ni ¼ a†i ai count the number of bosons
at site i; the operators ai, a

†
i obey the canonical commu-

tation relations ½ai; a†j � ¼ δij, and L is the number of sites.
The parameters J, U in Eq. (1) are the hopping amplitude
and the strength of the on-site interaction, respectively.
Throughout this Letter, we consider only attractive inter-
actions; both energies and the parameterU are in units of J.
Times are in units of ℏ=J. Equation (1) describes a closed
system and therefore it neglects three-body losses. We will
also always (unless stated otherwise) consider open boun-
dary conditions: a†1aL ¼ a†La1 ¼ 0. The BHM (1) is not

solvable by the coordinate Bethe ansatz. The failure results
because of finite probabilities that a given site is occupied
by more than two particles, whose interaction cannot be
factorized in terms of two-body scattering [45–47].
Nevertheless, the plane-wave ansatz of the coordinate
Bethe ansatz works well in the so-called two-particle
sector, for which such probabilities are vanishing [39,40].
Despite the fact that the BHM is not integrable, its
continuous limit is the Bose-gas integrable field theory
[48] (see Supplemental Material [41]). We note that a
similar logic works also for discretization for the classical
nonlinear-Schrödinger equation [49].
Bound versus scattering states.—Information on the

available excitations in the system as a function of their
momentum k and energy ω is provided by the dynamical
structure factor Sðk;ωÞ:

Sðk;ωÞ ¼
X

α≠0

X

r

jhαje−ikrn̂rj0ij2δðω − ωαÞ; ð2Þ

where n̂r is the number operator acting on the site r, j0i is
the ground state, and α labels the states with increasing
energy (i.e., α ¼ 1 is the first excited state). The peaks of
Sðk;ωÞ reconstruct the energy bands of the system [50,51].
We observe that for small U a low-energy band separates
from the rest of the spectrum. Corroborated by the exact
results obtained for the BHM in the two-particle [39,40]
and three-particle [50,51] sectors (see Supplemental
Material [41]), we conclude that for a general number of
particles the lower band is always made of L bound states.
Such a conclusion is further supported by the study of
correlation functions presented below. Remarkably,
because of the lattice bending of the energy bands, we
observe that for U<Uc the two bands of bound and
extended states are partially overlapping [see Figs. 1(a),
1(c)]. For U > Uc the two bands are fully separated by an
energy gap which linearly grows with the interaction
strength [see Figs. 1(b), 1(d)]. Further details on Uc and
a full study of the energy bands can be found in the
Supplemental Material [41]. We point out that the regime of
degeneracy between extended and bound states cannot be
captured by either mean-field or continuous Lieb-Liniger
model since both theories describe the solitonic states with
a single parameter (the interaction U), without reference to
any specific feature of the energy bands.
In order to characterize bound states, we study the

density-density correlation function (the system being
translationally invariant, the density itself does not display
fruitful features): CðrÞ ¼ hnL=2nL=2þri. From our numeri-
cal analysis we confirm that the ground state is a bound
state: CðrÞ ∼ expð−r=ξÞ with correlation length ξ decreas-
ing with increasing U—Fig. 2(a). For excited states, the
lowest excitation branch is, indeed, made of bound states
characterized by CðrÞ decaying exponentially with a single
ξ depending solely on U. On the other hand, for states

(a) (b)

(d) (e)

(c)

FIG. 4. Upper row (a)–(b): expansion of a soliton composed by
N ¼ 5 particles, pinned to the center of a chain with L ¼ 41 sites
for different regimes. Panel (c): expansion velocity vðtÞ for
different interaction strengths. The black line divides the gapless
(upper) regions from the gapped (lower) ones. Panel (d)–(e):
asymptotic expansion velocity v∞ as a function of U − UcðNÞ
and of ½U − UcðNÞ� ffiffiffiffi

N
p

.

FIG. 5. Schematic diagram of the system as a function of the
filling at varying interaction strength.
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belonging to the second branch, at intermediate distances,
CðrÞ approaches a plateau ∼nas ¼ ðN=LÞ2, before drop-
ping down when approaching the walls of the box. We thus
can conclude that the higher branch contains extended
states. This strong difference in the correlations in the two
bands can be quantified by studying the density-density
correlations at large distance, as defined by the correlator
CLD ¼ PL=4

i¼2 CðiÞ=N , whereN is the number of sites over
which this function has its support. While for scattering
states CLD ≈ nas, see Fig. 2(c), for bound states the
magnitude of the correlations is several orders of magnitude
smaller because of the faster decay of the corresponding
CðrÞ. Such a feature provides a clear indicator of the nature
of the states (extended or bound).
We proceed to study the stability of these states through a

suitable dynamical protocol. Specifically, we address the
evolution of bound and scattering excited states, jψBi and
jψSi, respectively, with adjacent energy eigenvalues in the
spectrum for U < Uc, after having perturbed the system by
adding a random-noise source in it. The dynamics is then
governed by a Hamiltonian which depends both on the
interaction strength U and on the intensity of the perturba-
tion, W: HðW;UÞ ¼ HðUÞ þP

iϵini, where ϵi is a ran-
dom variable chosen uniformly in the interval ½−W;þW�.
In Fig. 3(b) we note that (within the time scale available in
our numerical simulations) CLDðtÞ remains almost constant
in the course of the evolution, meaning that bound and
scattering states are not mixed by random disorder. This is a
strong evidence, on the timescale considered, of the soliton
stability and robustness.
Dynamical expansion of pinned solitons.—Finally, we

devise a specific dynamical protocol to evidence the
features of the band structure shown in Fig. 1.
A soliton is pinned in a given site i0 of the lattice, by

initially breaking the lattice translational symmetry with an
attractive potential Hiðμ; UÞ ¼ HðUÞ þ μðUÞni0 ; and then
let it expand. The pinning energy μðUÞ is chosen such that
the energy injected in the system by the perturbation is
equal to the width of the bound-state band (see
Supplemental Material [41]). In this way, while for small
U we populate both scattering and bound states, forU > Uc
when the gap separates the two bands, mostly bound states
are populated.
The dynamical evolution is governed byHðUÞ obtained by

removing thepinningpotential. InFigs. 4(a)–4(c)we show the
expansion dynamics of the density for three cases: U < Uc,
U ≈ Uc, andU > Uc. Increasing the interaction strength, we
see that the density profile stays closer and closer to the shape
of the initial state, only its small fraction spreading into the
chain. This can be seen more quantitatively by studying the
expansion velocity: vðtÞ ¼ ðd=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðtÞ − R2ð0Þ

p
, with

R2ðtÞ ¼ ð1=NÞPL
i¼1 niðtÞði − i0Þ2. In Figs. 4(d)–4(e) we

show, respectively, vðtÞ and its asymptotic value v∞ at large
times.

While for U < Uc no oscillations are visible within the
simulation time considered, at increasing U ≥ Uc the
velocity displays typical oscillations with period scaling
as ℏ=U.
The asymptotic expansion velocity v∞ is identified

by fitting it to a phenomenological expression, vðtÞ≈
v∞ þ cosðAtÞ=tB, where A and B are fitting parameters.
The inspection of v∞ in Fig. 4(e) further shows the
difference between the two regimes.
Interestingly enough, close to Uc, we find that v∞

displays scaling behavior; the results are not affected by
the size of the system. While there is no criticality in the
system, the observed feature is due to a diverging timescale
associated with the soliton thermalization: as critical slow-
ing down implies scaling, here, the scaling is due to the fact
that the soliton cannot equilibrate to the state with uniform
density.
Conclusions.—In this work, we studied the spatial

correlations and dynamical properties of attractive bosons
in one-dimensional lattices. The presence of the lattice
induces a characteristic energy band structure, for which
bright solitons display specific properties with distinctive
correlation functions. Such features can affect the dynam-
ics of the system substantially. We have demonstrated
how a bright solitonic bound state can be created in the
system and, by studying the expansion dynamics, we
have provided a way to test its stability against external
perturbations.
Our work can be relevant for fundamental studies on the

ergodicity of quantum systems. Thermalization in quantum
many-body systems is usually expressed in terms of the
well-known eigenstates thermalization hypotesis (ETH)
[52,53]: if the expectation values of local observables for
individual eigenstates are a smooth function of energy,
then the system behaves ergodically and one can replace,
for such observable, the long-time average by the Gibbs
ensemble average with no memory of the specific initial
state except its energy. The bimodal distribution of corre-
lations in Figs. 3(a) and 3(b) with coexistence, for U < Uc,
of the two families of states at the same energy leads to a
clear violation of the ETH. Our understanding of the
system can be summarized in Fig. 5, where three regimes
may occur.
(I) Since lattice spacing Δ results to be vanishing propor-

tionally to the filling factor ν ¼ N=L, at sufficiently small ν,
our bosonic system is integrable (described by the Bose-gas
field theory [48,54]). According to the general theory, in this
limit the system is expected to thermalize to a generalized
Gibbs ensemble. (II) By increasing the filling facctor, the
system does not remain integrable, being described by the
Bose-Hubbard model. For such system, when bound states
and scattering states coexist with equal energies (i.e., for
U < Uc), the long-times asymptotic states strongly depend
on the initial states. (III) At larger filling, the system is far
from integrability, as the Bose-Hubbard corrections to the
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Bose gas grow stronger. In this case, the solitonic band is
nearly flat, making the coexistence between bound and
scattering states impossible. In this limit, therefore, the
system is ergodic. Such a scenario indicates that going from
(I) to (III), the integrability, controlled by the filling (instead
of the perturbation added to the Hamiltonian, in the
framework of more standard approaches), is destroyed by
entering an intermediate regime, in which the system keeps
some trace of integrability in that the dynamics is not
ergodic. In this sense then, we contribute to the search of
a quantum analog of the KAM theorem [55] which is one
of the key challenges in contemporary research (see
Refs. [56–58]). We note that the scenario emerging in our
work is in line with the findings of Rigol [59]. As a follow
up of the present study, it would be interesting to study
whether more complex bound states and observables at
higher energies can provide different types of intermediate
thermalizations.
We believe that our analysis is within the current activity

in atomic physics quantum technology. Ultracold atoms
with tunable interactions have been already loaded in one-
dimensional optical lattices in several experiments [60–63].
A specific protocol allowing us to address bound and
scattering states selectively at a given mean energy can be
implemented by quenching the interaction from repulsion
or attraction and evolving with the target Hamiltonian.
Atomtronic circuits can also provide appropriate tools to
explore the dynamics of the system [64–67].
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