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We study the spontaneously broken phase of the XY model in three dimensions, with boundary
conditions enforcing the presence of a vortex line. Comparing Monte Carlo and field-theoretic
determinations of the magnetization and energy density profiles, we numerically determine the mass
of the vortex particle in the underlying O(2)-invariant quantum field theory. The result shows, in particular,
that the obstruction posed by Derrick’s theorem to the existence of stable topological particles in scalar
theories in more than two dimensions does not in general persist beyond the classical level.
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Topological excitations are among the most fascinating
objects in quantum field theory (QFT) [1,2]. Being asso-
ciated with extended configurations of the fields appearing
in the action, they are intrinsically nonperturbative and
difficult to characterize as quantum particles. Awell-known
exception is provided by two-dimensional space-time,
where sine-Gordon solitons correspond, through fermioni-
zation, to the fundamental fields of the massive Thirring
model [3]; in addition, integrability allows a full and exact
quantum description [4]. No similar methods, however, are
available in higher dimensions.
In three dimensions, the simplest theory with symmetry

properties allowing for topological excitations—vortices—
is the O(2)-invariant scalar theory. This describes the
universality class of the XY lattice model, which includes
the superfluid transition of 4He as a particularly interesting
representative (see Ref. [5]). While a direct responsibility
of vortices in the phase transition of the three-dimensional
O(2) theory has been debated [6,7], it is a fact that the
transition is of the type associated with spontaneous
symmetry breaking, which occurs also in the absence of
nontrivial topology. In field theory, vortices in the scalar
theory have usually been considered only to point out a
problem, i.e., that the energy (mass) of the static classical
solution diverges logarithmically [8], a particular case of
Derrick’s theorem [1,2,9]. This divergence at the classical
level suggested the absence of a vortex particle in the
scalar QFT.
In this Letter, we consider the three-dimensional XY

model in its spontaneously broken phase, slightly below the
critical temperature Tc, with boundary conditions enforcing
the presence of a vortex line. As the other properties of the
near-critical system, the corresponding energy density and
order parameter profiles have to be accounted for by the

O(2) scalar QFT describing the continuum limit.
Remarkably, these profiles are calculable in the field-
theoretical framework, and we compare the analytic results
with the numerical determination obtained by Monte Carlo
simulations, finding excellent agreement as we vary the
temperature and the end-to-end distance of the vortex
line. In the process, we numerically determine the mass
mV of the vortex particle, which for small jT − Tcj can be
expressed as

mV ≈ 2.1mþ; ð1Þ

where mþ is the mass of the fundamental particles in the
phase with unbroken symmetry (T > Tc). This result
provides the first direct verification that Derrick’s theorem,
as a statement concerning classical field configurations,
does not prevent the existence of stable topological
particles in quantum theories of self-interacting scalar
fields in more than two dimensions.
We consider the XY model with reduced Hamiltonian

H ¼ −
1

T

X
hi;ji

si · sj; ð2Þ

where si is a two-component unit vector (spin) located at
the site i of a cubic lattice, and the sum is performed over all
pairs of nearest neighboring sites. We focus on the case
T < Tc in which the O(2) symmetry of the Hamiltonian is
spontaneously broken, i.e., hsii ≠ 0; h� � �i denotes the
average over spin configurations weighted by e−H. Close
to Tc the intrinsic length scale of the system becomes much
larger than lattice spacing, and the system is described by a
O(2)-invariant Euclidean scalar field theory, which in turn
is the continuation to imaginary time of a QFT in (2þ 1)
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dimensions. Switching to notations of the continuum, we
denote by x ¼ ðx1; x2; τÞ≡ ðx; τÞ a point in Euclidean
space, τ being the imaginary time direction, and by sðxÞ ¼
(s1ðxÞ; s2ðxÞ) the two-component spin field. The field
theory is the usual one defined by the action

A ¼
Z

d3xf½∂μsðxÞ�2 þ g2s2ðxÞ þ g4½s2ðxÞ�2g; ð3Þ

with the XY critical point reachable tuning the couplings
(see, e.g., Ref. [10]).
We consider the system as defined in the volume

x1 ∈ ð−L=2; L=2Þ, x2 ∈ ð−L=2; L=2Þ, τ ∈ ð−R=2; R=2Þ,
with L → ∞ and R large but finite. The boundary con-
ditions are chosen in such a way that all spins on the
external surfaces parallel to the τ axis point outwards
orthogonally to the surface. This implies the formation of a
vortex on each section with constant τ, with the vortex
center forming a vortex (or defect) line as τ varies.
Boundary conditions on the surfaces τ ¼ �R=2 are fixed
as shown in Fig. 1 so that the end points of the vortex line
are fixed at x ¼ 0, τ ¼ �R=2. The vortex line corresponds
to the trajectory in imaginary time of a topological particle
(the vortex V) in the (2þ 1)-dimensional QFT [11].
The boundary conditions at τ ¼ �R=2 act as boundary

states jBð�R=2Þi ¼ e�ðR=2ÞHjBð0Þi of the Euclidean time

evolution; here, H denotes the Hamiltonian of the quantum
system. These boundary states can be expanded on the
basis of asymptotic particle states of the QFT and will
contain the vortex as the contribution with minimal
energy, i.e.,

jBð�R=2Þi ¼
Z

dp
ð2πÞ2Ep

ape�ðR=2ÞEp jVðpÞi þ � � � ; ð4Þ

where p is the two-component momentum of the particle,
Ep¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

V

p
its energy, ap an amplitude, andwe normal-

ize the states by hVðp0ÞjVðpÞi ¼ ð2πÞ2Epδðp − p0Þ. In the
calculations performed with the boundary conditions we
have chosen (which we indicate with a subscript B), the one-
vortex contribution in Eq. (4) determines the asymptotics for
R ≫ 1=mV (indicated below by the symbol ∼). Then, we
have

ZB≡hBðR=2ÞjBð−R=2Þi¼hBð0Þje−RHjBð0Þi

∼ ja0j2
Z

dp
ð2πÞ2mV

e−fmVþ½p2=ð2mV Þ�gR¼ja0j2
2πR

e−mVR; ð5Þ

while for the expectation value of a field Φ, we obtain

hΦðx; 0ÞiB ¼ 1

ZB
hBðR=2ÞjΦðx; 0ÞjBð−R=2Þi

∼
R

ð2πÞ3m2
V

Z
dp1dp2FΦðp1jp2Þ

× e−½R=ð4mVÞ�ðp2
1
þp2

2
Þþix·ðp1−p2Þ; ð6Þ

where

FΦðp1jp2Þ ¼ hVðp1ÞjΦð0;0ÞjVðp2Þi; p1;p2 → 0 ð7Þ

is the low-energy limit of the form factor of the field on the
vortex state. Its behavior determines the final form of Eq. (6).
The expectation value hsðx; 0ÞiB (magnetization) has to

interpolate between zero at x ¼ 0 (where the symmetry is
unbroken) and the asymptotic value

lim
jxj→∞

hsðx; 0ÞiB ¼ vx̂; ð8Þ

where x̂ ¼ x=jxj, and v ¼ jhsðx; τÞij is the modulus of the
bulk magnetization for free boundary conditions. It was
argued in Ref. [11] that such a behavior requires Fsðp1jp2Þ
to be proportional to

p1 − p2

jp1 − p2j3
; ð9Þ

it was shown in the same letter that, when inserted in
Eq. (6), this expression produces the result

FIG. 1. Geometry considered for the XY model below Tc.
Boundary spins point outwards orthogonally to the vertical
external surfaces. On the top and bottom surfaces they are fixed
as indicated so that a vortex line (one configuration is shown)
runs between the central points of these surfaces.
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hsðx; 0ÞiB ∼ v
ffiffiffi
π

p
2 1F1

�
1

2
; 2;−η2

�
ηx̂;

¼ v
ffiffiffi
π

p
2

η½I0ðη2=2Þ þ I1ðη2=2Þ�e−η2=2x̂; ð10Þ

where 1F1ðα; γ; zÞ is the confluent hypergeometric func-
tion, IkðzÞ are Bessel functions, and

η≡
ffiffiffiffiffiffiffiffiffi
2mV

R

r
jxj: ð11Þ

The generalization of Eq. (10) to hsðx; τÞiB is straightfor-
ward and results in replacing η by η=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4τ2=R2

p
.

We now compare the theoretical prediction (10) with
Monte Carlo simulations of the XY model on the cubic
lattice. Obviously, in the simulations L is finite, but we
always take it sufficiently large to exhibit the approach to
the theoretical asymptotic values; lattices with L up to 161
and R up to 91 are considered (lengths entering simulations
are expressed in units of the lattice spacing). Technical
details are quite similar to those of our recent study of the
two-dimensional Potts models [12]. In particular, the
standard Metropolis algorithm [13] is used. Thermal
averages are computed by averaging over several (at least
six) realizations, with each run being of length 106

Monte Carlo steps per site. The resulting error bars are
not depicted in Figs. 2 and 3 below; usually their size does
not exceed that of the symbols in those figures.
The relations we write below are intended in the limit in

which the temperature approaches the critical value Tc,
which is known very accurately; we quote here the result
1=Tc ¼ 0.4541652ð11Þ [14] and take Tc ≃ 2.2018. Our
simulations are performed in the spontaneously broken
phase T < Tc, sufficiently close to Tc to make corrections

to scaling inessential, at least within the level of accuracy
relevant for the purposes of this Letter. Since for L large
and sufficiently away from the boundaries, all radial
directions in the plane τ ¼ 0 are equivalent, we focus on
the cases x2 ¼ 0 or x1 ¼ 0. We measured hsiiB along these
axes and verified that, within error bars, only the radial
component is nonzero. This component should then be
compared with Eq. (10), taking into account that near Tc,

mV ≃m0
VðTc − TÞν; ð12Þ

v ≃ v0ðTc − TÞβ; ð13Þ

with ν ¼ 0.6717ð1Þ, β ¼ 0.3486ð1Þ [14], and v0 ¼
0.945ð5Þ [15]. It follows that m0

V is the only unknown
quantity in the comparison between theory and data. Our
Monte Carlo results for different values of T and R are
shown in Fig. 2 and seen to be in remarkable agreement
with the theoretical curves corresponding to m0

V ¼ 2.5. In
particular, the figure confirms that the magnetization
profiles depend on the scaling variable (11), which in turn
originates from the fact that the vortex is an asymptotic
particle of the underlying QFT. The data also implicitly
confirm the form (9) of Fsðp1jp2Þ. A singularity for equal
momenta is known to appear also in the form factor of the
spin field on the soliton state in two dimensions [16,17],
where it accounts for new results in the theory of phase
separation and interfaces [18].
As any critical amplitude, m0

V is nonuniversal (i.e.,
depends on lattice details), and it is relevant to obtain
the universal ratio with another mass amplitude. Above Tc,
the correlation function hsðxÞ · sð0Þi decays exponentially
at large distances as e−mþjxj, where mþ ≃m0þðT − TcÞν is

FIG. 2. Analytic values of the magnetization (10) (continuous
curves) and corresponding Monte Carlo results (data points). In
order of decreasing slope at x1 ¼ 0, the curves refer to (T ¼ 2.0,
R ¼ 31), (T ¼ 2.1, R ¼ 61), and (T ¼ 2.18, R ¼ 61). The
Monte Carlo curves were obtained for L ¼ 61, 101, 161,
respectively.

FIG. 3. Analytic values of the energy density profile (14)
(continuous curves) and corresponding Monte Carlo results (data
points). The top and bottom profiles refer to (T ¼ 2.0, R ¼ 31)
and (T ¼ 2.16, R ¼ 91), respectively. The profiles in between are
obtained for T ¼ 2.1 and refer to R ¼ 31 (deeper minimum) and
R ¼ 81. Simulations were performed with L ¼ 91, 101, 151 for
T ¼ 2.0, 2.1, 2.16, respectively.
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the mass of the lightest particles and coincides (see, e.g.,
Ref. [19]) with the inverse of the correlation length
determined numerically in Ref. [20]. From the data
reported in that letter [see Table 7 and Eq. (25)], we
deduce the value m0þ ≃ 1.21, which then leads to the
universal relation (1).
Below Tc, the presence of Goldstone bosons makes it

more complicated to extract a mass scale from the decay of
spin-spin correlations, and it has been common to consider
instead the helicity modulus ϒ, which measures the free
energy change under a twist of the spins [21]. On the
other hand, we are seeing that a true massmV emerges from
the measurement of the magnetization (10). Together with
Eq. (1), the result ϒ=mþ ¼ 0.411ð2Þ obtained in Ref. [20]
then leads to the universal ratio ϒ=mV ≈ 0.2.
We also measured the local energy density

εi ¼
P

j∼i si · sj, where the sum runs over the nearest
neighbors of site i. The Monte Carlo data we obtained
along radial directions at τ ¼ 0 are shown in Fig. 3 and
clearly exhibit the localization of the vortex energy around
the center of the system. They also allow us to see that the
depth of the minimum of the profiles scales as R−1=2. These
features are accounted for by the choice Fc

εðp1jp2Þ ∝
ðjp1jjp2jÞ−1=2 for the energy density field εðxÞ ∼ s2ðxÞ;
the superscript c denotes the connected part. Upon insertion
in Eq. (6), this yields

hεðx; 0ÞiB ∼
Affiffiffiffi
R

p
�
1F1

�
3

4
; 1;−

mV

R
x2

��
2

þ Evac; ð14Þ

where the additive constant Evac ¼ h0jεj0i corresponding
to the vacuum energy density comes from the disconnected
part ð2πÞ2mVδðp1 − p2Þh0jεj0i of Fεðp1jp2Þ. The quan-
tities appearing in Eq. (14) scale as

Evac ≃ E0ðTc − TÞνXε ; ð15Þ

A ≃ A0ðTc − TÞνðXε−1=2Þ; ð16Þ

where Xε is the scaling dimension of the energy density
field; since ν ¼ 1=ð3 − XεÞ, the value we already quoted
for this exponent yields Xε ≃ 1.51. For jxj large and
sufficiently away from the boundary, the Monte Carlo data
for the energy density asymptotize to the bulk energy
density E, which differs from Evac by regular terms
cnðTc − TÞn, n ¼ 0; 1;… (see, e.g., Ref. [20]); we obtain
E fitting the data reported in Ref. [20] for a list of values of
T. Having already determined mV , the only unknown
parameter left in the comparison between theory and data
for the energy density is the amplitude A0 entering Eq. (16).
The value A0 ¼ −7.1 yields the agreement with the
Monte Carlo data exhibited in Fig. 3. It is remarkable
how the comparison with the simulation data allows us to
correct the behavior Fc

εðp1jp2Þ ¼ const assumed [22] in

Ref. [11] and to gain further insight into this previously
unexplored sector of QFT.
It follows from Eq. (10) that jhsðx; 0ÞiBj=v behaves as

Ajxj and 1 − ðBjxjÞ−2 for small and large jxj, respectively,
with A=B ¼ ffiffiffi

π
p

=4 ≃ 0.443. We notice that these asymp-
totics are also exhibited by the numerical solution (see
Ref. [23]) of the Gross-Pitaevskii (GP) equation for the
wave function of a vortex in a Bose gas, with a value 0.412
for A=B. In this form, the comparison overcomes the fact
that the characteristic lengths are different in the two cases;
in particular, the length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2mV

p
in Eq. (11) depends on

the distance R, which has no counterpart in the GP
calculation. In perspective, it will be interesting to see
whether our results can be relevant for the controversial
problem of defining an inertial mass per unit length of
vortex tubes in superfluids (see Ref. [24]).
It must be noted that the result (10) for hsðxÞiB relies

only on the topological constraints and does not require that
the scalar field interacts only with itself. Hence, Eq. (10)
should hold also if the scalar is coupled to the electro-
magnetic field [25]. This case, however, does not corre-
spond to the XY universality class and, in particular, the
mass ratio (1) will be different. Similarly, Eq. (10) should
hold in the broken phase of XY models allowing for
antiferromagnetic bonds. Vortex lines in a model of this
type have been considered [26] in connection with the
paramagnetic Meissner effect.
Summarizing, we studied the spontaneously broken

phase of the three-dimensional XY model with boundary
conditions enforcing the presence of a vortex line. Through
comparison with analytic expressions, we showed that the
results of Monte Carlo simulations for the order parameter
and energy density profiles correspond to a field theory
possessing the vortex as a stable quantum particle and
determined in the process the numerical value of its mass.
The result also yields the first direct verification that
Derrick’s theorem, as a statement for classical field con-
figurations, does not provide a fundamental obstruction to
the existence of topological particles in purely scalar QFTs
in more than two dimensions. The analytic form of the
profiles for large end-to-end distance of the vortex line
relies on topological properties and should continue to hold
when the scalar field is coupled to electromagnetism.
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