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The way in which energy is transported through an interacting system governs fundamental properties in
nature such as thermal and electric conductivity or phase changes. Remarkably, environmental noise can
enhance the transport, an effect known as environment-assisted quantum transport (ENAQT). In this Letter,
we study ENAQT in a network of coupled spins subject to engineered static disorder and temporally
varying dephasing noise. The interacting spin network is realized in a chain of trapped atomic ions, and
energy transport is represented by the transfer of electronic excitation between ions. With increasing noise
strength, we observe a crossover from coherent dynamics and Anderson localization to ENAQTand finally
a suppression of transport due to the quantum Zeno effect. We find that in the regimewhere ENAQT is most
effective, the transport is mainly diffusive, displaying coherences only at very short times. Further, we show
that dephasing characterized by non-Markovian noise can maintain coherences longer than white noise
dephasing, with a strong influence of the spectral structure on the transport efficiency. Our approach
represents a controlled and scalable way to investigate quantum transport in many-body networks under
static disorder and dynamic noise.
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Introduction.—The transport of energy through networks
governs fundamental phenomena such as light harvesting
in photosynthetic organisms [1,2] or properties of nano-
fabricated quantum devices [3,4]. Often, such systems are
subject to static disorder, which for noninteracting particles
suppresses transport through Anderson localization [5].
In realistic networks, coupling to environments such as
phonon baths moreover induces dynamical noise that can lift
Anderson localization, an effect known as environment-
assisted quantum transport (ENAQT). This phenomenon
has been postulated to be a key factor enabling the high
efficiency of energy conversion in photosynthetic biomole-
cules [6–9]. At large noise levels, the transport efficiency
again decreases due to the quantum Zeno effect [10]. While
the general phenomenology governing the transport effi-
ciency is widely accepted, many works have been dedicated
to understanding the influence of non-Markovian noise
[11–15] as well as coherence [6,13,16–21]. Here, engineered
quantum systems provide a prime opportunity, by enabling
controlled studies of energy transport under noisy environ-
ments. Recent experiments have started investigating the
elementary building blocks of ENAQT but were limited to,
at most, four network nodes, represented by photonic
waveguides, classical electrical oscillators, superconducting
qubits, or trapped ions [22–27].

In this Letter, we study ENAQT in a controlled network of
10 coupled spins subject to static disorder and dephasing
noise [see inset (a) in Fig. 1]. The network is realized in a
system of trapped ions following a recent proposal [28].
Our approach enables us to investigate the role of ENAQT in
a controlled quantum network that does not have a simple
lattice structure restricted to close-neighbor interactions.
First, applying white dephasing noise of increasing strength,
we observe a crossover from coherent dynamics and
Anderson localization to ENAQT, and finally a suppression
of transport due to the quantum Zeno effect. In the regime
where ENAQT is most effective, we find that the transport
reveals coherences only at very short times and that the
spread of the excitation is mostly diffusive. Finally, we show
that non-Markovian dephasing can maintain coherences
longer than white noise, with a strong influence of the
structure of the noise spectrum on the transport efficiency.
Experimental implementation.—Experimental Imple-

mentation The nodes of our quantum network are encoded
into (pseudo-) spin-½ particles, represented by two internal
electronic states of 40Caþ ions trapped in a linear Paul trap
[32]. We define the state jS1

2
; m ¼ þ 1

2
i as spin down j↓i and

jD5
2
; m ¼ þ 5

2
i as spin up j↑i. A spin-spin interaction

Hamiltonian is realized by global laser pulses coupling the
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electronic states of all ions [33,34]. In the subspace with a
single spin excitation j↑i, the Hamiltonian is given by

H1 ¼ ℏ
X
i≠j

Jijðσþi σ−j þ H:c:Þ: ð1Þ

Here, σþi ðσ−i Þ are the spin raising (lowering) operators for site
i. This Hamiltonian describes the hopping of spin excitations
between sites i and j and conserves the total magnetization;
i.e., the number of spins in the excited state j↑i is preserved.
The hopping rates follow an approximate power law, Jij ¼
Jmax=ji − jjα, with peak strength Jmax between ð2πÞ28 Hz
and ð2πÞ33 Hz and exponent α ¼ 1.22 [33]. Inset (a) of
Fig. 1 depicts this quantum network.
Static disorder, disturbing the quantum network, is rep-

resented as on-site excitation energies ℏBi [see Fig. 1(b) and
Eq. (3)]. ThevaluesBi are randomly sampled from a uniform
distribution ½−Bmax; Bmax�, with Bmax ∈ f0.5; 2.5gJmax. In
the experiment, these disorder energies are realized by laser
beams focused to single ions and introducing precisely

controlled ac-Stark shifts on the encoded spin states [35].
For this, we apply multiple radio frequencies to an acousto-
optical deflector, generating a set of laser beams to simulta-
neously address multiple ions.
Moreover,we can temporallymodulate the ac-Stark shifts,

employing an arbitrary-wave-form generator with a switch-
ing time much faster than all other timescales. Using this
technique, we are able to engineer time-dependent on-site
energies ℏWiðtÞ, which induce dephasing between the j↓i
and j↑i states. In this way, we simulate a stationary noise
process with vanishing mean, ⟪WiðtÞ⟫ ¼ 0, and broadly
tunable spectral power [36,37]

SðωÞ ¼ lim
T→∞

1

T

Z
T

0

Z
T

0

⟪WiðtÞWiðt0Þ⟫eiωðt−t0Þdt0dt; ð2Þ

where ⟪ • ⟫ denotes averaging over noise trajectories. Cross
talk between neighboring spins and subharmonics of the
driving frequencies are negligible, so noise at different sites is
uncorrelated. Including static disorder and dynamical
dephasing noise, the Hamiltonian H1 becomes

H ¼ ℏ
X
i≠j

Jijðσþi σ−j þ H:c:Þ þ ℏ
X
i

ðBi þWiðtÞÞσzi ; ð3Þ

where σz is the Pauli-z matrix.
To investigate ENAQT, we introduce an excitation at time

t ¼ 0 at the source site isource ¼ 3 [see inset (a) of Fig. 1] by
preparing spin isource in theσ

z
i eigenstate j↑iwhile keeping all

other spins in the eigenstate j↓i. We observe the transport of
the excitation through the network to the target site itarget ¼ 8

under the HamiltonianH in Eq. (3), for both Markovian and
non-Markovian dephasing. The source and target sites are
chosen such that the transport dynamics is not immediately
influenced by boundary effects. We define the transport
efficiency to a particular site i by ηi ≡ R tmax

0 dtpiðtÞ. Here,
piðtÞ ¼ ðhσzi ðtÞi þ 1Þ=2 is the instantaneous probability to
find the excitation at site i and tmax ¼ 60 ms ≈ 11.7=Jmax is
the system’s evolution time. The time is chosen such that the
evolution is long enough to observe ENAQT and short
enough to minimize decoherence from amplitude damping
due to spontaneous decay [28]. Any residual amplitude
damping effect is eliminated by postselecting measurements
with a single excitation in the system. Typically, more than
77% of the measurements lie within this subspace.
Markovian dephasing.—Markovian dephasing We first

study ENAQT in the regimewhereWiðtÞ can be described as
white (orMarkovian) noise, i.e., SðωÞ ¼ const. In the experi-
ment, everyΔT ¼ 100 μs (200 μs) we randomly sampleWi
between f−ðWmax=2Þ; ðWmax=2Þg with equal probabilities
(equivalent to tossing a coin). As the “coin-tossing rate” λ ¼
1=ΔT is much faster than themaximal hopping Jmax, over the
relevant frequency range this process is well approximated as
white noise SðωÞ ¼ ðW2

max=λÞ. This constant spectral power
defines the noise strength and gives a rate of dephasing
γ ¼ ðW2

max=λÞ.Weapplydephasingnoise toour systemunder

0 10-2 10-1 100 101

ENAQT Q. ZenoLocaliz.
1.0

0.8

0.6

0.4

0.2

0.0

(a) 1

2

3
4

5 6
7

8

9

10

Bi Wi

1 2 3 Ion number4 5 6 7

(b)

FIG. 1. Main graph: Transport efficiency η8 to the target (ion 8)
under different strengths of static disorder (blue: Bmax ¼ 0.5Jmax;
red: Bmax ¼ 2.5Jmax) and Markovian-like dephasing with rate γ.
Experimental points (shown as dark squares and triangles) result
from averaging over 20–40 random realizations of disorder and
noise, with 25 experimental repetitions each. Error bars are
derived via bootstrapping, based on 1000 samples (see [29] for
details). The regimes of localization, ENAQT, and the quantum
Zeno effect are indicated in gray. The data agree well with
theoretical simulations of the coin-tossing random process (light
bullets) realized in the experiment, while simulations with ideal
Markovian white noise (lines) underestimate ENAQT at large γ.
The simulation averages over 300 random realizations. Inset (a):
Sketch of the transport network. The ions experience a long-range
coupling, with darker and thicker connections indicating higher
coupling strengths. The green arrows denote the source (3) and
the target (8) for the excitation in the ion network. Inset (b):
Sketch of the ion chain representing interacting spin-½ particles
as blue circles, with the spin states denoted by black arrows. The
ions are subject to random static and dynamic on-site excitation
energies, indicated by Bi and WiðtÞ.
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(i) weak static disorder Bmax ¼ 0.5Jmax and (ii) strong static
disorder Bmax ¼ 2.5Jmax.
Figure 1 shows the measured transport efficiency η8 as a

function of γ=Jmax: Weak static disorder Bmax < Jmax (blue
markers) does not affect transport considerably. However,
with additional noise at a level beyond γ ¼ Jmax, the
transport efficiency gradually decreases. This regime,
where noise is the dominant effect and it inhibits quantum
transport, is known as the quantum Zeno regime. Under
strong static disorder Bmax > Jmax (red markers), the
phenomenology becomes even richer: At weak dephasing,
γ < Jmax, excitation transport is suppressed corresponding
to Anderson localization. Around γ ≈ Jmax, the noise
cancels destructive interference causing the localization,
and it thereby enhances the transport efficiency, which is
the hallmark of ENAQT. For strong noise, γ > Jmax, the
quantum Zeno effect again suppresses transport.
The experimental results agree well with theoretical

simulations of the coin-tossing random process (light bullets
in Fig. 1). At very strong dephasing, the shiftWmax becomes
comparable to the coin flipping rate λ, and the Markovian
approximation is no longer fulfilled. In this case, deviations
from idealMarkovianwhite noise (lines) become noticeable,
as discussed in [28]. Such non-Markovian effects will be
further discussed later, after analyzing the coherence proper-
ties of the quantum transport.
Coherent dynamics in excitation transport.—The role of

coherences in ENAQT has been discussed in the context of
exciton transport in photosynthetic complexes [9,38–41].
To investigate how coherences affect excitation transport in
our system, we observe the time-resolved dynamics of the
excitation probability of spin 8, p8ðtÞ, for strong static
disorder and several levels of dephasing noise (see Fig. 2).
Without dephasing noise, γ ¼ 0, oscillations are distinctive
by a few standard deviations, indicating quantum coherent
transport. In the intermediate regime γ ∼ Jmax, however, the
spurious oscillations are on the order of statistical fluctua-
tions. A theoretical model with ideal Markovian noise
reflects the transition to a classical rate equation, valid for
t ≫ 1=γ (see Supplemental Material [42]). For strong
dephasing noise, the excitation dynamics is well described
by this classical rate equation (see Fig. 2). Here, the
coherences between sites have been adiabatically elimi-
nated, resulting in the equation

_pi ¼
X
l≠i

Γliðpl − piÞ; ð4Þ

with piðtÞ the excitation probability of spin i. The classical
hopping rate Γli ¼ fðγJ2ilÞ=½4ðBi − BlÞ2 þ γ2�g is derived
from the experimental spin-spin coupling matrix Jil, Bi are
the applied static on-site energies, and γ is the dephasing
noise rate. This set of coupled differential equations
describes a purely diffusive transport of the spin excitation.
For weak dephasing, we observe deviations from rate
equation (4) at short times, which indicates a temporal

crossover from ballistic to diffusive transport, similar to
what has recently been resolved in classical Brownian
motion [43]. With increasing dephasing strength, the
observed coherences are damped, and the system converges
to a diffusive rate equation. This highlights the fact that
Anderson localization is a wave phenomenon caused by
destructive interference, which is lifted by dephasing.
Crossover from ballistic to subdiffusive transport.—We

can quantify the transport behavior by examining the
spatial dispersal of the excitation, i.e., by measuring the
spatial width σWP of the excitation wave packet. This
analysis is analogous to experiments with ultracold atoms
in a momentum space lattice [44] and to experiments in a
photonic system on a discrete quantum walk [45]. We
calculate the width via the spread from source spin i3:

σWPðtÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðPi>i3 piðtÞði − i3Þ2Þ

q
(this formula is chosen

to reduce boundary effects; see Supplemental Material [42]
for details). Depending on the relationship to time,
σWPðtÞ ∝ tC, one distinguishes between “normal diffusion”
as it occurs in classical random walks (C ¼ 0.5), “sub-
diffusion” (0 < C < 0.5), and “superdiffusion” (C > 0.5).
The case C ¼ 1 is referred to as ballistic transport. As we
now show, we observe ballistic, diffusive, and subdiffusive
behavior in our experiment.
The excitation dynamicspiðtÞ for three exemplary param-

eter values is displayed in the left column of Fig. 3. At small
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FIG. 2. Excitation probability at ion 8 as a function of time, for
strong static disorder Bmax ¼ 2.5Jmax and increasing dephasing
rate, from (a) to (d), γ=Jmax ¼ 0j0.23j1j3.9. Each data set (red to
magenta triangles) results from averaging over 20–40 random
realizations, with 25 repetitions each. Error bars are derived with
bootstrapping [29], based on 1000 samples. With increasing γ,
coherent oscillations damp out, and the data converge towards a
model following diffusive, classical rate equations (blue solid
line). This theoretical approximation is valid for times t ≫ 1=γ.
(The crossover tc ¼ 1=γ is illustrated by a blue dashed line.)
Shaded areas show the time evolution of a theoretical model with
ideal Markovian noise, averaged over 100 random realizations.
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γ, an interference pattern is clearly visible. This hallmark for
coherence is rapidlywashed out as γ increases.We fit a power
lawof the form σWPðtÞ ¼ AtC to thewidth of thewave packet
(see Fig. 3, right column), only including data up to the time
where the excitation has been reflected from the left
boundary back to ion 2 (Fig. 3, left column). In this way,
we exclude data dominated by boundary effects.Without any
disorder and noise, the width increases linearly in time with
C ¼ 1.05� 0.06, corresponding to ballistic spreading. In the
regime around γ ¼ Jmax [Fig. 2(b)], where ENAQT is most
efficient, we find that within very short times t ∼ 1=Jmax,
the transport evolves from ballistic to mainly diffusive
dynamics (as theoretically predicted in Ref. [46]), yield-
ing C ¼ 0.74� 0.17.
For strong dephasing, γ ¼ 18.4Jmax, we observe subdif-

fusive transport with a power exponent C ¼ 0.44� 0.02.
Based on theoretical simulations, we conclude that subdif-
fusive dynamics is caused by the long-range interactions in
our system.

Non-Markovian dephasing.—In Fig. 1, the experimen-
tally observed transport efficiencies for γ > Jmax are higher
than the simulated values for ideal Markovian noise. This
discrepancy could indicate that non-Markovian effects
can increase the transport efficiency. To investigate non-
Markovian dephasing further, we study ENAQT under noise
with a spectral density function SðωÞ of Lorentzian shape,
which we generate using the frequency-domain algorithm
described in Ref. [47]. We choose a single random configu-
ration of static disorder (Bmax ¼ 2.5Jmax) in order to have full
knowledge of the disordered system and its eigenvalues.
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FIG. 3. Left panels: Single-ion resolved excitation dynamics
piðtÞ for (a) the unperturbed system (no static disorder and no
noise), (b) static disorder Bmax ¼ 2.5Jmax with dephasing γ ¼
Jmax, and (c) static disorder Bmax ¼ 2.5Jmax with γ ¼ 18.4Jmax.
The orange dotted line shows the maximum speed at which an
excitation spreads (see Supplemental Material [42]) in order to
estimate until when the reflection from the left boundary can be
neglected (blue arrows). Right panels: Spatial width of the
excitation wave packet σWPðtÞ, calculated from the data in the left
panels. Blue solid lines are fits of the form σWP ¼ AtC (fits from
the respective other panels are included as dashed lines for
comparison). The vertical black line at σmax ¼ 5.3 is the expected
maximum of the wave-packet width, for a single excitation
distributed equally over all ions. (a) A¼6.5�0.5;C¼1.05�
0.06, (b) A ¼ 3.2� 0.3; C ¼ 0.74� 0.17, (c) A ¼ 1.7� 0.1,
C ¼ 0.44� 0.02. All error bars are derived via bootstrapping
[29], based on 100 samples.
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FIG. 4. Comparison of different noise models. (a) Spectral
density functions SðωÞ of (1) white noise and (2)–(6) non-
Markovian noise models of Lorentzian shape. The curves are
averaged over about 30 random realizations, each generated by a
Gaussian random process based on 600 sampling points. The
inset shows a zoom into the low-frequency domain. Vertical grey
lines denote the difference frequencies between all eigenenergies
of the disordered system. (b) Comparison of ηtarget to target ions
8–10 subject to strong static disorder and the noise models shown
in (a), as indicated by corresponding colors and numbering. Noise
model zero indicates bare static disorder without noise. While
broadband noise in the correct frequency range generically
enhances transport efficiencies, for narrow-band noise the en-
hancement depends on the source and target ions. Each data point
results from averaging over 25–30 random realizations, with 15
repetitions each. Error bars are derived with bootstrapping [29],
based on 1000 samples. (c,d) Excitation probability of target ion
9 as a function of time under strong static disorder and different
noise models. Panel (c) shows the result for the Markovian noise
model (1). Oscillations, indicating coherent dynamics, are
strongly damped. Panel (d) shows the effects of a narrow-band
Lorentzian noise model covering only a few eigenstates (model
6). Here, coherences are more strongly maintained and are clearly
discriminable from measurement errors up to about 30 ms.

PHYSICAL REVIEW LETTERS 122, 050501 (2019)

050501-4



From Fig. 4, we see that the spectral structure of the noise
model has a strong influence on the transport efficiency:
Non-Markovian structured noise that covers all difference
frequencies of the spin system’s eigenenergies (models 3
and 4) can enhance excitation transport as much as white
noise (model 1), and the efficiency is similar for different
target ions [Fig. 4(b)]. Narrow-band noise models, instead,
only couple a few eigenstates, so the spectral position
determines for which target ions excitation transport is
enhanced (cf. models 5 and 6 in Fig. 4). Integrating the
applied local energy shifts over the entire interaction time,
we find that with narrow-band non-Markovian noise, we can
achieve similar transport efficiencies as with Markovian
noise but already at half the energy cost [cf. noise models 1
and 6 in Fig. 4(a)]. Further, panels (c) and (d) in Fig. 4 show
that coherences can be maintained better for narrow-band
noise models than for Markovian-like noise.
Conclusion.—We have experimentally analyzed a quan-

tum network under static disorder and dynamic noise,
realized in a string of 10 trapped ions. We observed effects
of Anderson localization in the absence of noise, an
increased transport efficiency by ENAQT at intermediate
noise levels, and, finally, suppression of quantum transport
under strong noise due to the quantum Zeno effect. Further,
we have found that coherences play a role only in the
localized regime (at very low noise strengths) or at very
short times. In all other regimes of Markovian noise, the
dynamics is well captured through a diffusive rate equation
describing a classical random walk. Finally, we found
that the structure of non-Markovian dephasing strongly
influences quantum transport, with the possibility to reach
as large efficiencies as with white noise while maintaining
long-lived coherences.
In the future, it will be interesting to study the possibility

of stochastically accelerated hypertransport, generated,
e.g., by time-evolving disorder [48]. Further, our approach
allows one to investigate quantum transport with multiple
interacting excitations or to study localization using out-of-
time-ordered correlators (OTOCs) [49,50].
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