
 

Dynamical Topological Transitions in the Massive Schwinger Model with a θ Term

T. V. Zache,1,* N. Mueller,2 J. T. Schneider,1 F. Jendrzejewski,3 J. Berges,1 and P. Hauke1,3
1Heidelberg University, Institut für Theoretische Physik, Philosophenweg 16, 69120 Heidelberg, Germany
2Physics Department, Brookhaven National Laboratory, Building 510A, Upton, New York 11973, USA

3Heidelberg University, Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

(Received 27 August 2018; revised manuscript received 17 December 2018; published 6 February 2019)

Aiming at a better understanding of anomalous and topological effects in gauge theories out of
equilibrium, we study the real-time dynamics of a prototype model for CP violation, the massive
Schwinger model with a θ term. We identify dynamical quantum phase transitions between different
topological sectors that appear after sufficiently strong quenches of the θ parameter. Moreover, we establish
a general dynamical topological order parameter, which can be accessed through fermion two-point
correlators and, importantly, which can be applied for interacting theories. Enabled by this result, we show
that the topological transitions persist beyond the weak-coupling regime. Finally, these effects can be
observed with tabletop experiments based on existing cold-atom, superconducting-qubit, and trapped-ion
technology. Our Letter thus presents a significant step towards quantum simulating topological and
anomalous real-time phenomena relevant to nuclear and high-energy physics.
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Introduction.—The topological structure of gauge theo-
ries has many important manifestations [1–5]. In quantum
chromodynamics (QCD), e.g., it allows for an additional
term in the action that explicitly breaks charge conjugation
parity (CP) symmetry [6–8]. Though the angle θ that
parametrizes this term is in principle unconstrained, experi-
ments have found very strong bounds on CP violation,
consistent with θ ¼ 0 [9]. In one elegant explanation, θ is
described as a dynamical field that undergoes a phase
transition, the “axion” [10–12], which is currently sought
after in experiments [13]. However, the controlled study of
topological effects far from equilibrium remains highly
challenging [14]. So-called quantum simulators offer an
attractive alternative approach. These are engineered quan-
tum devices that mimic desired Hamiltonians in an analog
way or synthesize them on digital (qubit-based) quantum
computers [15–17]. While theories of the standard model,
such as QCD, are beyond the current abilities of quantum
simulators, existing technology [18,19] can already simu-
late simpler models, which puts insight into the topological
properties of gauge theories within reach. In this respect,
the massive Schwinger model [20], describing quantum
electrodynamics (QED) in 1þ 1 dimensions, is particularly
interesting because it allows for a CP-odd θ term similar to
QCD. However, while ground-state and thermal properties
of QCD and of the Schwinger model have been extensively
studied [21,22], much less is known about their topological
structure out of equilibrium.
In this Letter, we investigate the nonequilibrium real-

time evolution of the massive Schwinger model after a
quench of the topological θ angle. We find topological
transitions in the fermion sector, which appear as vortices in

the single-particle propagator when θ changes by more than
a critical value. In the limit of vanishing gauge coupling, we
rigorously connect this phenomenon to dynamical quantum
phase transitions (DQPTs), which in condensed-matter
lattice models are currently receiving considerable attention
[23–26]. A topological nature of DQPTs has previously
been revealed in noninteracting theories [27–29]. Here, we
demonstrate how to construct a general dynamical topo-
logical invariant that is valid in the continuum and, most
importantly, also in interacting theories. Moreover, our
topological invariant provides a physical interpretation of
DQPTs in terms of fermionic correlation functions.
Enabled by this result, we use nonperturbative real-time
lattice calculations at intermediate to strong coupling to
show that the topological transition persists up to e=m≲ 1.
Already for lattices as small as eight sites, we obtain good
infrared convergence. Moreover, the relevant phenomena
occur on timescales that have already been accessed in
proof-of-principle quantum simulations of gauge theories
[18,19]. These features will enable near-future experiments
based on trapped ions [18], superconducting qubits [19],
and cold neutral atoms [30] to probe this dynamical
topological transition.
θ quenches in the massive Schwinger model.—The

massive Schwinger model is a prototype model for
3þ 1D QCD since both share important features, such
as a nontrivial topological vacuum structure and a chiral
anomaly [20,21]. CP violation can be studied by adding a
so-called topological θ term ðeθ=2πÞEx to the Hamiltonian
density, where E is the electric field and e is the dimen-
sionful gauge coupling. In the temporal axial gauge, and by
making a chiral transformation, the θ term can be absorbed
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into the fermion mass term to give the following
Hamiltonian [20]:

Hθ ¼
Z

dx
�
1

2
E2
x þ ψ†

xγ0ðiγ1Dx þmeiθγ
5Þψx

�
: ð1Þ

Here, ψ are two-component fermion operators, γ0=1 con-
stitute a two-dimensional Clifford algebra, and γ5 ≡ γ0γ1.
The Hamiltonian contains the energy of the electric field,
the kinetic term of the fermions, which are coupled to the
gauge sector via the covariant derivative Dx ¼ ∂x þ ieAx,
where e is the electric coupling, and the fermion rest mass
m. While the addition of the θ term is an imaginary
contribution to the action (see, e.g., [31]), we emphasize
that the Hamiltonian (1) remains Hermitian. In particular,
its spectrum is real and θ does not introduce any instability.
Here, we wish to study how topological properties

appearing through the CP-violating θ term become mani-
fest in the real-time dynamics of the theory. To this end, we
prepare the system in the ground state jΩðθÞi of Hθ and
switch abruptly to another value θ0, thereby quenching the
system out of equilibrium. Since the θ angle in the massive
Schwinger model has the same topological origin as its
counterpart in 3þ 1D QCD, we can interpret the studied
quench as a classical external axion field. In the following,
we will show that this quench generates topological
transitions, which appear as momentum-time vortices in
the phase of the gauge-invariant time-ordered Green’s
function,

gθ→θ0 ðk; tÞ ¼
Z

dxe−ikxhψ†ðx; tÞe−ie
R

x

0
dx0Aðx0;tÞψð0; 0Þi:

ð2Þ
Here, we abbreviated h�� �i¼hΩðθÞj�� �jΩðθÞi andOðx;tÞ¼
eiHθ0 tOðxÞe−iHθ0 t with O ∈ fψ ;ψ†; Ag, which encodes the
dependence on the quench parameters. We will first discuss
these topological transitions in the continuum theory at
weak coupling, where we show analytically their direct
correspondence to DQPTs. These results will motivate the
definition of a general topological invariant, which will
enable us to study also the interacting theory, discussed
further below.
Weak-coupling limit.—In the weak-coupling limit,

e=m → 0, the massive Schwinger model is a free fermionic
theory that can be solved analytically by diagonalizing
Hθ ¼

R
dkHθðkÞ, with HθðkÞ ¼ ψ†

kγ
0ðkγ1 þmeiθγ

5Þψk.
Figure 1 displays the phase of gθ→θ0 as a function
of ðk; tÞ for two exemplary quenches with Δθ ¼ 0.45π; π
[our results here depend only onΔθ ¼ ðθ − θ0Þ ∈ ð−π; π� ].
Strong quenches in the range jΔθj > ðπ=2Þ are accompa-
nied by the formation of vortices at critical times

tðnÞc ¼ ð2n − 1Þtc, with tc ¼ π=½2ωðkcÞ�, n ∈ N, and
ωðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. These appear in pairs of opposite

winding at critical modes �kc ¼ �m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cos ðΔθÞp

.

This observation suggests to define a dynamical topo-
logical order parameter that counts the difference of
vortices contained in left (−) vs right (þ) moving modes,
ν≡ nþ − n−, with

n�ðtÞ≡ 1

2π

I
C�ðtÞ

dzfg̃†ðzÞ∇zg̃ðzÞg: ð3Þ

Here, g̃ðzÞ≡ gθ→θ0 ðk; t0Þ=jgθ→θ0 ðk; t0Þj and C�ðtÞ is a rec-
tangular path enclosing the left or right half of the z ¼
ðk; t0Þ plane up to the present time t; i.e., it runs (counter-
clockwise) along ð0;0Þ↔ ð0;tÞ↔ ð�∞;tÞ↔ ð�∞;0Þ↔
ð0;0Þ as visualized in Fig. 1. As exemplified in Fig. 2(a),
the topological invariant remains trivial for jΔθj < π=2,
while for jΔθj > π=2 it changes abruptly at critical

times tðnÞc .
These critical times coincide with fundamental changes

in the properties of the real-time evolution, coined DQPTs
[23]. DQPTs are revealed in the so-called Loschmidt
amplitude, which is related to the vacuum persistence
amplitude [32] and which is a common measure, e.g., in
the field of quantum chaos [33]. The Loschmidt amplitude
quantifies the overlap of the time-evolved state with its
initial condition

Lθ→θ0 ðtÞ≡ hΩðθÞje−iHθ0 tjΩðθÞi: ð4Þ

It is convenient to further define an intensive “rate
function”

ΓðLÞ
θ→θ0 ðtÞ≡ − lim

V→∞

1

V
log jLθ→θ0 ðtÞj: ð5Þ

FIG. 1. Phase of the time-ordered correlator [Eq. (2)] after θ
quenches at vanishing gauge coupling. The real-time evolution
of the phase exhibits qualitative differences when the quench is
weaker or stronger than the critical value Δθc ¼ π=2, exem-
plified here for Δθ ¼ 0.45π (left) and Δθ ¼ π (right). The
phase is analytic for small quenches ðjΔθj < ΔθcÞ, while for
large quenches ðjΔθj > ΔθcÞ vortices form at ð�kc; t

ðnÞ
c Þ. The

integration path CþðtÞ, here shown for tm ≈ 9, encloses a
discrete number of vortices (marked by yellow circles), leading
to integer increments of the topological invariant ν as time
progresses (see Fig. 2).
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DQPTs appear as nonanalyticities of Eq. (5) [zeros
of Eq. (4)].
In the limit e=m → 0, where the system is in a product

state jΩðθÞi ¼ ⊗
k
jΩkðθÞi, the Loschmidt amplitude can be

decomposed into Fourier modes,

Lθ→θ0 ðtÞ ¼
Y
k

hΩkðθÞje−iHθ0 ðkÞtjΩkðθÞi: ð6Þ

At e=m → 0, we have the additional identity
hΩkðθÞje−iHθ0 ðkÞtjΩkðθÞi ¼ gθ→θ0 ðk; tÞ. Thus, zeros of the
Loschmidt amplitude imply that the phase of the Green’s
function becomes undefined for a critical mode, enabling
the appearance of the vortices seen in Fig. 1. As a
consequence, at zero coupling the topological transitions
and nonanalyticities of the rate function in Eq. (5) strictly
coincide [see Fig. 2(b)].
For noninteracting lattice theories, a topological nature

of DQPTs has previously been revealed through the
phase of the Fourier-decomposed Loschmidt ampli-
tude, arg ½hΩkðθÞj exp½−iHθ0 ðkÞt�jΩkðθÞi� ¼ ϕgeom þ ϕdyn

[27]. Here, the total phase has been divided into a trivial
dynamical phase ϕdynðk; tÞ and the so-called Pancharatnam
geometric phase ϕgeomðk; tÞ. At a DQPT, the winding
number of ϕgeom changes by an integer. This change can
be computed by integration across (half) the Brillouin zone
at fixed time t [27], which has been used in the recent

experiments of Refs. [28,29]. For this prescription to work,
however, one needs to subtract the trivial dynamical phase
ϕdyn, which can reasonably be obtained only perturbatively
close to the noninteracting case. Compared to this standard
prescription, our construction in Eq. (3) has a number of
advantages. First, the prescription of Ref. [27] fails for
θ ≠ 0; π, where the absence of a particle-hole symmetry
makes modes at k ¼ 0;�∞ inequivalent. Second, and
more importantly, by using a closed path in the ðk; tÞ
plane (cf. Fig. 1) only the singular geometric part contrib-
utes to the integral in Eq. (3), irrespective of the smooth
dynamical phase. Thus, together with the definition
through fermionic correlators [Eq. (2)], instead of
Fourier modes of the wave function overlap [Eq. (6)],
our formulation enables us to tackle also the interacting
theory.
Towards strong coupling.—To investigate if the topo-

logical transitions persist at nonvanishing coupling,
e=m > 0, we perform nonperturbative real-time lattice
simulations based on exact diagonalization (ED), using
the PYTHON package QUSPIN [34]. We focus on the
strongest quench Δθ ¼ π (or −m → m), using staggered
fermions with lattice Hamiltonian [35]

H
a
¼

XN−1

n¼0

�
E2
n

2
þmð−1Þnϕ†

nϕn −
i
2a

ðϕ†
nUnϕnþ1 − H:c:Þ

�
:

ð7Þ

Here, ϕn are one-component fermion operators on an
even number of lattice sites N, En and Un are electric
fields and links, and a is the lattice spacing. To apply ED,
we restrict the simulation to the physical Hilbert space
by solving the Gauss law constraint Gnjphysi ¼ 0 with
Gn ¼ En − En−1 − efϕ†

nϕn þ ½ð−1Þn − 1=2�g. In contrast
to previous works [18,36], we use periodic boundary
conditions [37] (see [38] for more details). To efficiently
compute the topological invariant ν in our numerics, we
adapt a formalism that has originally been developed for
computing Chern numbers in momentum space [39]. The
possibility to adapt this formalism to our case is another
feature of our definition in Eq. (3) since it is enabled by the
use of a closed integration path in the ðk; tÞ plane. This
adaption forces ν to remain integer valued even when
evaluated on coarse grids, thus leading to convergence
already for small lattices [40].
As can be expected from the above discussions, at small

e=m transitions in the topological invariant coincide with
maxima in the rate function (see Fig. 3). Further, both
structures congruently persists at larger values of e=m.
Importantly, however, while the system sizes accessible for
ED do not allow one to discern clear kinks in the rate
function, the nonequilibrium topological invariant ν sharply
distinguishes between topologically inequivalent phases,
revealing a shift of the transitions towards larger tc as e=m

FIG. 2. Dynamical topological transitions at vanishing gauge
coupling. (a) The topological invariant exhibits jumps at critical

times tðnÞc ¼ ð2n − 1Þπ=½2ωðkcÞ� with n ∈ N, if jΔθj > π=2,
while the dynamics is topologically trivial for jΔθj < π=2.
(b) For jΔθj > π=2, the rate function [Eq. (5)] shows nonanalytic

kinks at times tðnÞc .
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is increased. While the results for e=m≲ 1 are already
reasonably finite-volume converged for the small system
size plotted, at e=m≳ 1 finite-volume effects persist up to
N ¼ 20 (cf. [38] and the Supplemental Material [41]).
Nevertheless, the topological transition must vanish at
sufficiently large coupling ec because θ becomes an
irrelevant parameter in the limit m → 0 [42]. Finite-size
effects in our numerical results hinder a quantitative
determination of ec. Motivated by these limitations, we
propose a possible quantum simulation of the present setup.
Quantum simulation.—Importantly, the first topological

transition happens on times of order tcm ∼ 1–2, which lies
within coherence times that are accessible with existing and
proposed quantum simulators [18,19,30]. A straightfor-
ward realization of the scenario discussed in this Letter may
be achieved with a quantum computer based on trapped
ions or superconducting qubits, where quench dynamics
has been studied recently [18,19]. Though these experi-
ments used only four lattice sites of staggered fermions,
larger lattices are within reach of current technology
[43–46]. Very recently, it has been shown that variational
algorithms can prepare the ground state of the lattice
Schwinger model with 8–20 sites with high fidelity
[47,48]. The relevant dynamics can be implemented by
discretizing the unitary evolution operator into a sequence
of quantum gates [18,49]. For staggered fermions, the mass
term is realized by local rotations and can be quenched by
inverting the direction of rotation. All observables studied
in this Letter can then be accessed by an appropriate
sequence of unitary operators intermitted by spin flips.
Alternatively, various works have proposed analog quan-
tum simulators of the massive Schwinger model [50–53].
One possible implementation is based on a mixture of
bosonic and fermionic atoms in a tilted optical lattice [30],
where the fermion mass corresponds to Rabi oscillations

between two hyperfine states driven by radio frequency
radiation. In this setup, a mass quench may be simply
implemented by abruptly adjusting the corresponding Rabi
frequency.
These experiments may unveil the topological transitions

through different observables: First, a digital quantum
computer could, in principle, work with the many-body
wave functions to directly calculate the order parameter ν
[Eq. (3)] and the rate function Γθ→θ0 ðtÞ [Eq. (5)]. Second,
one could measure the two-time correlator gθ→θ0 ðk; tÞ
[Eq. (2)] [54,55] and thereby avoid the study of many-
body overlaps. Third, the discrete transition points of the
order parameter are indicated also in experimentally more
accessible equal-time correlation functions, ½FðtÞ�αβxy ≡
h½ψαðt; xÞ; ψ̄ βðt; yÞ�i. Namely, let us define

Kθ→θ0 ðtÞ≡
Y
k

½Fðk; tÞ þ Fðk; 0Þ�2; ð8Þ

whereF¼ðFs;F1;F5Þ are Lorentz components of the corre-
lator, FðtÞ¼FsðtÞ1þFμðtÞγμþiF5ðtÞγ5 [56]. In the weak-
coupling limit, one has Kθ→θ0 ðtÞ ¼

Q
kjgθ→θ0 ðk; tÞj2 ¼

jLθ→θ0 ðtÞj2 (for details, see [38]). This motivates us to define
the rate functions ΓðgÞðtÞ and ΓðKÞðtÞ analogously to ΓðLÞðtÞ
by replacing jLðtÞj in Eq. (5) with

Q
kjgðk; tÞj and

ffiffiffiffiffiffiffiffiffi
KðtÞp

,
respectively. We thus have three complementary definitions
that coincide for e=m → 0, obtained from equal-time
correlators [Eq. (8)], two-time correlators [Eq. (2)], and
the full many-body Loschmidt amplitude [Eq. (4)].
Remarkably, as illustrated in Fig. 3(c) for e=m ¼ 1, even
at intermediate couplings the maxima of all three rate
functions indicate the same critical times with relative
deviation less than about 8%. See the Supplemental
Material [41] for a quantitative comparison, which

FIG. 3. Dynamical topological transitions beyond weak coupling. (a) The integer-valued topological invariant ν clearly distinguishes
different “phases” in the ðt; eÞ plane. The topological transition persists at larger coupling, but shifts towards later times and appears at
sufficiently large coupling. (b) The maxima of the rate function obtained from the many-body overlap agree qualitatively with the
transitions in ν, but are blurred by the finite lattice size. (c) Rate functions computed from the full wave function overlap [red dotted line;
cf. (b) and Eq. (5)], from fermionic two-time correlators [orange dot-dashed line; cf. (a) and Eq. (2)], and equal-time correlators [blue
solid line; cf. Eq. (8)] all indicate the same time of the first topological transition, here illustrated for e=m ¼ 1. Simulations are for a
small lattice of N ¼ 8 sites, as relevant for first quantum-simulator experiments, and with lattice spacing am ¼ 0.8.
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demonstrates that the three rate functions show comparable
finite-size deviations, which for the topological order
parameter are significantly smaller.
Besides its experimental simplicity, Eq. (8) also gives an

interesting interpretation of the dynamical topological
transition in terms of a dephasing effect. Namely,
Eq. (8) has zeros if and only if the mode kc at time tc
exhibits perfect anticorrelation with the initial state,
Fðkc; tcÞ ¼ −Fðkc; 0Þ. This anticorrelation is responsible
for the nonanalytic behavior of the associated rate function.
Conclusions.—In this Letter, we have studied the real-

time dynamics of massive 1þ 1D QED with a θ term, as a
prototype model for topological effects in gauge theories.
By establishing a general dynamical topological order
parameter, which can be obtained from fermionic correla-
tors and is valid in interacting theories, we have identified
the appearance of dynamical topological transitions after
changes in the external axion field. A connection between
the topological transitions to DQPTs, which is rigorous at
zero coupling, persists in our numerics of the interacting
theory, thus providing a physical interpretation of DQPTs
in terms of fermionic correlators. Finally, our topological
order parameter can directly be applied also in the study of
condensed-matter models, where the construction of topo-
logical invariants for interacting systems is a major out-
standing challenge [57–59].
In our Letter, we have identified a relevant problem for

state-of-the-art quantum simulation. The described dynami-
cal transitions constitute an ideal first step because the
relevant dynamics appears at short timescales and small
system sizes. We expect the topological nature to provide
robustness against experimental imperfections, which may
provide a starting point to tackle the question of certifi-
ability of quantum simulation.
Despite the simplicity of the considered model, our

study shows that quantum simulators provide a unique
perspective to the topological structure of QCD out of
equilibrium. Phenomena closely related to the physics
studied in this Letter are the conjectured chiral magnetic
and similar effects [60–63], which remain challenging in
and out of equilibrium for theoretical studies [14,64–72].
Here, a simple next step for future quantum simulators
is to model these effects by spatial domains of the θ
parameter [73].

This work is part of and supported by the DFG
Collaborative Research Centre “SFB 1225 (ISOQUANT),”
the ERC Advanced Grant “EntangleGen” (Project
No. 694561), and the Excellence Initiative of the German
federal government and the state governments–funding
line Institutional Strategy (Zukunftskonzept): DFG Project
No. ZUK 49/Ü. N.M. is supported by the U.S. Department
of Energy, Office of Science, Office of Nuclear Physics,
under Award No. DE-SC0012704 and by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) - Project No. 404640738.

Note added.—For a related work on dynamical qua-
ntum phase transitions in lattice gauge theories, see
the article published on the arXiv on the same day by
Huang et al. [74].
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