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We investigate a quantum battery made of N two-level systems, which is charged by an optical mode via
an energy-conserving interaction. We quantify the fraction of energy stored in the battery that can be
extracted in order to perform thermodynamic work. We first demonstrate that this quantity is highly
reduced by the presence of correlations between the charger and the battery or between the subsystems
composing the battery. We then show that the correlation-induced suppression of extractable energy,
however, can be mitigated by preparing the charger in a coherent optical state. We conclude by proving that
the charger-battery system is asymptotically free of such locking correlations in the N → ∞ limit.
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Introduction.—The possibility of using quantumphenom-
ena for technological purposes is currently a very active
research field. In this context, an interesting research topic is
that of “quantum batteries” (QBs) [1–9], i.e., quantum
mechanical systemswhich behave as efficient energy storage
devices. This is motivated by the fact that genuine quantum
effects, such as entanglement or squeezing, can typically
boost the performances of classical protocols, e.g., by
speeding up the underlying dynamics [10,11]. The advantage
provided by quantum correlations in the charging (or
discharging) process of a QB has been discussed in a fully
abstract fashion [1–4] and, more recently, for concrete
models that could be implemented in the laboratory [5–7].
Up to now, research efforts have been mostly focused on
maximizing the stored energy,minimizing the charging time,
or maximizing the average charging power [3–7]. A “good”
QB, however, should not only store a relevant amount of
energy, but also have the capability to fully deliver such
energy in a useful way which, said in thermodynamic terms,
is the capability of performingwork. This observation is not a
negligible subtlety, since in quantum information theory it is
well known that correlations and entanglement may induce
limitations on the task of energy extraction [1,12–16]. We
are, therefore, naturally led to face a somewhat frustrating
situation inwhich quantum correlations have simultaneously
both a positive and a negative effect in the process of energy
storage. On one hand, they can speed up the charging time of
QBs,while, on the other hand, they can pose a severe limit on
the work that can be actually extracted from it.
In this Letter, we shed some light on the competition

between the aforementioned positive and negative aspects
of quantum correlations, by analyzing the case of N

two-level systems (qubits) charged via a single optical
mode, the so-called Tavis-Cummings model [17,18], which
is known to provide an effective description of experimen-
tally feasible many-body systems in circuit QED [19–22].
Our findings show that in the case of QBs involving a small
number of qubits the energy locked by correlations can be
large and must be taken into account for a rigorous and fair
analysis of the performance of the QB itself. Luckily,
however, this negative effect can be strongly reduced by an
optimization over the initial state of the charging system,
i.e., by properly preparing the initial state of the charger.
Moreover, in the thermodynamic N → ∞ limit of many
qubits, the fraction of locked energy becomes negligible,
independent of the initial state of the charger. We argue that
this is a general property of quantum charging processes of
closed Hamiltonian systems, which can be applied to other
schemes (e.g., those analyzed in Ref. [7]) beyond the
specific setup presented here, being ultimately linked to
the integrability of the dynamics and not depending on the
details of the latter.
Mean energy versus extractable work.—We start by

defining a general model for the charging process of a
QB, schematically represented in Fig. 1. Here, a first
quantum system A acts as the energy “charger” for a
second quantum system B that instead acts as the battery of
the model. They are characterized by local HamiltoniansHA
andHB respectively, which, for the sake of convenience, are
both selected to have zero ground-state energy. Later on we
shall also assume B to be composed by N nonmutually
interacting elements: for the moment, however, this
assumption is not relevant, and we do not invoke it yet.
At time t ¼ 0 the system starts in a pure factorized state
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jψiA ⊗ j0iB, with j0iB being the ground state of HB, and
jψiA having mean local energy EAð0Þ ≔ Ahψ jHAjψiA > 0.
By switching on a couplingHamiltonianH1 between the two
systems, our aim is to transfer as much energy as possible
from A to B, in some finite time interval τ, the charging time
of the protocol. For this purpose, we write the global
Hamiltonian of the model as

HðtÞ≡HA þHB þ λðtÞH1; ð1Þ
where λðtÞ is a classical parameter that represents the external
control we exert on the system, and which we assume to be
given by a step function equal to 1 for t ∈ ½0; τ� and zero
elsewhere. Accordingly, indicating with jψðtÞiAB the
evolved state of the system at time t, its total energy EðtÞ ≔
ABhψðtÞjHðtÞjψðtÞiAB is constant at all times with the
exception of the switching points, t ¼ 0 and t ¼ τ, where
some nonzero energy can be passed on AB by the external
control. (See Ref. [7] for a detailed analysis on the energy
cost ofmodulating the interaction.) For the sake of simplicity,
we set these contributions equal to zero by assuming H1 to
commute with the local terms HA þHB [23]. Under this
condition, the energy that shifts fromA toB can be expressed
in terms of the mean local energy of the battery at the end of
the protocol, i.e., the quantity

EBðτÞ≡ tr½HBρBðτÞ�; ð2Þ
ρBðτÞ being the reduced density matrix of the battery at time
τ. The next question to ask is which part of EBðτÞ can be
extracted from B without having access to the charger (a
reasonable scenario in any relevant practical applications
where the chargerA is not available to the end user), andwhat
is instead locked by the correlations AB have established
during the charging process. A proper measure for this
quantity is provided by the ergotropy [24] of the state ρBðτÞ.
We remind the reader that given a quantum system X
characterized by a local Hamiltonian H, the ergotropy
Eðρ;HÞ is a functional which measures the maximum
amount of energy that can be extracted from a density matrix
ρ ofXwithout wasting into heat. A closed expression for this
quantity can be obtained in terms of the difference

Eðρ;HÞ ¼ EðρÞ − Eðρ̃Þ; ð3Þ

between the mean energy EðρÞ ¼ tr½Hρ� of the state ρ and
that, Eðρ̃Þ ¼ tr½Hρ̃�, of the passive counterpart ρ̃ of ρ
[24–30]. The latter is defined as the density matrix of X
which is diagonal on the eigenbasis of H and whose
eigenvalues correspond to a proper reordering of those
of ρ, i.e., ρ̃ ¼ P

nrnjϵnihϵnj with ρ ¼ P
nrnjrnihrnj,

H ¼ P
nϵnjϵnihϵnj, with r0 ≥ r1 ≥ � � � and ϵ0 ≤ ϵ1 ≤ � � �,

yielding Eðρ̃Þ ¼ P
nrnϵn. Notice that, if we set the ground-

state energy to zero (ϵ0 ¼ 0) and if the state is pure, then
Eðρ̃Þ ¼ 0 and the ergotropy coincides with the mean
energy of ρ, i.e., Eðρ;HÞ ¼ EðρÞ. On the contrary, if the
state is mixed, the extractable work is in general smaller
than the mean energy, i.e., Eðρ;HÞ < EðρÞ. Since, in the
problem at hand, the global system dynamics of AB is
unitary and the initial state ρABð0Þ of the charger-battery
system is pure, ρABðtÞ remains pure at all times. However,
the local state of the battery ρBðτÞ will be in general mixed
because of its entanglement with the charger introducing a
nontrivial gap between its ergotropy

EBðτÞ≡ E½ρBðτÞ;HB�; ð4Þ

and the energy EBðτÞ it stores at the end of the charging
process, see Eq. (2). As wewill show below, the former can
be much smaller than the latter for the experimentally
relevant case of a system composed by a small number of
battery elements [31,32].
Results.—For the sake of concreteness and the feasibility

of its experimental realization, in the remaining of this work
we focus on a definite model in which the charger A is a
photonic cavity coupled via energy-conserving terms to a
array of N nonmutually interacting qubits that act as the
battery B [6]. The microscopic Hamiltonian is therefore the
one of the Tavis-Cummings model [17,18]: HA ¼ ω0a†a,
HB ¼ ω0

P
N
i¼1 σ

þ
i σ

−
i , H1 ¼ g

P
N
i¼1ðaσþi þ a†σ−i Þ, where

aða†Þ is a bosonic annihilation (creation) operator, σ�i are
raising or lowering spin operators for the ith qubit, ω0 is the
characteristic frequency of both subsystems, and g the
coupling strength (ℏ ¼ 1 throughout this work). In this
setting we compare the final maximum extractable work

measured by the ergotropy EðNÞ
B ðτÞ and the mean energy

EðNÞ
B ðτÞ of the battery with respect to different initial states

jψAi of the charger (the label N being added to put
emphasis on the size of the B system). We restrict the
analysis to three typical quantum optical states [33]: a Fock
state, a coherent state, and a squeezed vacuum state, all

having the same input energy EðNÞ
A ð0Þ, which we set equal

to Nω0 in order to ensure that it matches the full energy
capacity of the battery. In Fig. 2 we show the stored energy

EðNÞ
B ðτÞ, the energy of the charger EðNÞ

A ðτÞ≡ tr½HAρAðτÞ�,
and ergotropy EðNÞ

B ðτÞ as functions of the duration τ of the
charging protocol, for the case of the input coherent state.

FIG. 1. The charging protocol of a quantum battery. At time
t < 0 the two systems A (i.e., the charger) and B (i.e., the battery)
do not interact and cannot exchange energy. In the time interval
0 < t < τ, the coupling Hamiltonian H1 is switched on and the
two subsystems interact with a coupling strength g. Finally, the
interaction is switched off at time τ and, after that, the energy
stored in the battery B, EBðτÞ, is conserved.

PHYSICAL REVIEW LETTERS 122, 047702 (2019)

047702-2



We clearly see that for
ffiffiffiffi
N

p
gτ ≲ π=4 the difference between

ergotropy and energy is relatively small. Conversely,
correlations that emerge between A and B at long times
yield an energy and an ergotropy that are significantly
different.
We now focus on the main point of this Letter, i.e., a

comparison between the fraction of extractable work with
respect to the total mean energy of the battery. Consistently
with previous approaches already used in the literature
[3,6], we fix the duration of the protocol to the value τ ¼ τ̄
which ensures the maximum value for the average charging

power PðNÞ
B ðτÞ≡ EðNÞ

B ðτÞ=τ, i.e., PðNÞ
B ðτÞ ≤ PðNÞ

B ðτ̄Þ.
As explicitly discussed in the Supplemental Material

[34], we start by observing that all initial states exhibit the
same PðNÞ

B ðτ̄Þ ∝ N3=2 scaling reported in Ref. [6], where
only Fock states were considered. This corresponds to a
τ̄ ∝ 1=

ffiffiffiffi
N

p
collective speed-up of the charging time, which

is independent of the initial state of A, and valid, in
particular, for a semiclassical coherent state. Highly non-
classical initial states are therefore not necessary for
optimizing the charging part of the protocol.
Next, in Fig. 3(a) we illustrate the dependence of the

ratio EðNÞ
B ðτ̄Þ=EðNÞ

B ðτ̄Þ on the numberN of qubits and for the
three selected initial states. We clearly see two important
facts: (i) for small N, the extractable work can be much
smaller than the mean energy of the battery and coherent
input states appear to be optimal; (ii) for large values of N,
almost all the mean energy of the battery becomes
extractable, a result which justifies a posteriori previous
asymptotic approaches [3,6] to QBs in which only the mean
energy was considered as a figure of merit. Figure 3(b)
shows the amount of energy that can be extracted from a
fraction of M ≤ N qubits (and normalized by M) divided
by the same quantity evaluated for all N qubits (and

normalized by N), i.e., ½EðMÞ
B ðτ̄Þ=M�=½EðNÞ

B ðτ̄Þ=N�. This
ratio describes the fraction of energy that can be extracted
when only operations on a subset of M qubits are allowed.
This is of interest because performing operations on all
qubits may be experimentally challenging. Our results
show, however, that this is in general not necessary.
Indeed, our illustrative results for N ¼ 8 demonstrate that
operating on a subset of just M ¼ 4 is already sufficient to
extract more than≈3=4 of all the available work. We further
note that also in this case the coherent states are optimal.
The fraction of extractable work from these initial states is
weakly affected by the limitation to local operations on
M ≤ N qubits, and is practically constant and close to 1.
These make coherent states ideal initial charging states for
QBs—see also Ref. [34].
Discussion and summary.—We now comment on the

two main results emerging from our numerical analysis,

FIG. 2. The energy EðNÞ
B ðτÞ (solid black line), the ergotropy

EðNÞ
B ðτÞ (dashed red line), the energy EðNÞ

A ðτÞ (dotted blue line),

and the ratio EðNÞ
B ðτÞ=EðNÞ

B ðτÞ (dash-dotted green line) are shown
as functions of

ffiffiffiffi
N

p
gτ. All quantities are measured in units of

Nω0. Numerical results in this figure have been obtained by
choosing a coherent state for N ¼ 8.

(a)

(b)

FIG. 3. Panel (a) The ratio EðNÞ
B ðτ̄Þ=EðNÞ

B ðτ̄Þ as a function of N
for three initial states of the charger: a Fock state (red circles), a
coherent state (blue triangles), and a squeezed state (green
squares). We fit the last five points of all sets of numerical data
with curves that converge to 1 with a 1=N scaling (dashed lines).

Panel (b) The quantity ½EðMÞ
B ðτ̄Þ=M�=½EðNÞ

B ðτ̄Þ=N� as a function of
M ≤ N. Color coding as in panel (a). Data in panel (b) have been
obtained by setting N ¼ 8.
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i.e., the optimality of coherent states for small N and the
asymptotic freedom of the charger-battery system from
locking correlations in the N ≫ 1 limit.
Regarding the first issue, we observe that from the

ergotropy definition (3), it is clear that the more mixed a
state is, the more difficult it is to extract its energy, a fact
which is analogous to the difficulty of extracting work from
a classical thermodynamic system with large entropy. Since
in our model the joint AB state is pure, the entropy of the
reduced density matrix of the battery is a consequence of its
entanglement with the charger. We can, therefore, say that,
for what concerns the capability of work extraction, it is
convenient to produce as little entanglement as possible
between the charger and the battery. From this argument,
we naturally conclude that highly nonclassical initial states
of the charger (such as Fock or squeezed states), which
induce a complex and entangling dynamics, are not optimal
for work extraction. On the contrary, we expect semi-
classical states like coherent states, which are well known
in quantum optics for producing small entanglement under
energy-conserving interactions, to be optimal for maximiz-
ing the final ergotropy of the battery (while maintaining the
collective speed-up of the charging time). This argument
provides a simple yet natural qualitative explanation of our
numerical results.
For what concerns instead the asymptotic freedom from

locking correlations in the N → ∞ limit, we argue that this
is not a peculiar feature of our model but rather a much
more universal fact that applies to all those systems whose
dynamics is restricted to a small part of the Hilbert space, a
phenomenon intrinsically connected with the integrability
of the model. In order to understand this point we start
again from our previous observation that the charger-
battery entanglement is the main limiting factor for the
task of work extraction. It is well known that the entangle-
ment entropy of the subsystems of an integrable system
usually fails to scale with their size. This phenomenon is
also known under the name of area law [37–39]. On the
contrary, the energy is an extensive quantity, which grows
linearly with the size of our battery. For this reason, we
expect that the relative ratio between the locked and the
extractable energy is negligible in the N → ∞ limit. Away
to put this observation on a more rigorous ground is via a
result we prove in Sec. IV of the Supplemental Material
[34]: namely, that if the system B is composed of N
resonant qubits and the number of nonnull eigenvalues of
the density matrix ρB scales polynomially in N, then all its
energy is accessible in the thermodynamic limit, i.e.,

lim
N→∞

EðNÞ
B =EðNÞ

B ¼ 1; ð5Þ

the limit being achieved with a finite-size 1=N scaling, as in
Fig. 3(a).
Now, one can identify at least two relevant classes of

models which fulfill the requirements listed above. The first

is represented by systems which, as our integrable [40]
Tavis-Cummings QB model, are characterized by energy
preserving interactions, i.e., ½H1;H0� ¼ 0, and which have
a single charger A with a not highly degenerate spectrum
and initialized into an input configuration with a suffi-
ciently well behaved energy distribution (e.g., a Fock or a
coherent state). In this case, assuming as usual the initial
mean energy of A to be proportional to N, the number of
relevant eigenvalues of its density matrix ρAðτÞ at the end of
the charging process will be upper bounded by a quantity d
that scales at most polynomially with N. (As a matter of
fact, for the Tavis-Cummings QB model the scaling of d is
indeed linear with N; see, e.g., Refs. [6,41].) This is a
simple consequence of the fact that the energy of A can
only be reduced by the interaction with the battery, initially
in its ground state. Since the global state of the complete
system is pure, the spectrum of ρAðτÞ will be equal to the
spectrum of ρBðτÞ [42] making the number of its non-
negligible eigenvalues also equal to d, and hence ultimately
leading to Eq. (5).
The second class of models for which we expect Eq. (5)

to hold, are those where the dynamics of the QB is
restricted to a small subspace of the entire exponentially
large Hilbert space due to the conservation of some
operator and the form of the initial state. A notable example
is the Dicke model [43], which exhibits conservation of
ðJðNÞÞ2. In this case, the initial state for the battery has a
definite eigenvalue for ðJðNÞÞ2, namely J ¼ N=2, and
hence all the dynamics of B lies in the subspace with a
definite J leading once more to Eq. (5), as we explicitly
show, via numerical analysis in Sec. Vof the Supplemental
Material [34].
In summary, by studying a physically well motivated QB

model, we found that, for a small number of batteries (as in
current state-of-the-art solid-state technology [19–22]), the
extractable energy can be significantly smaller than the
mean energy stored in the devices. This negative effect
strongly depends on the choice of the initial state of the
charger and we found that coherent states are optimal for
mitigating this phenomenon. For a large number of the
batteries, instead, we found that the extractable energy
converges to the stored energy. We also argued that this a
rather universal phenomenon characterizing all charger-
battery systems in which the amount of entanglement is not
extensive with respect to the size N of the battery.

Numerical work has been performed by using the
PYTHON toolbox QuTiP2 [44]. We wish to thank D.
Farina, D. Ferraro, P. A. Erdman, V. Cavina, and
F. M. D. Pellegrino for useful discussions.
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