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The hexatic fluid refers to a phase in between a solid and a liquid that has short-range positional order but
quasi-long-range orientational order. In the celebrated theory of Berezinskii, Kosterlitz, and Thouless and
subsequently refined by Halperin, Nelson, and Young, it was predicted that a two-dimensional hexagonal
solid can melt in two steps: first, through a transformation from a solid to a hexatic fluid, which retains
quasi-long-range orientational order; and then from a hexatic fluid to an isotropic liquid. In this Letter,
using a combination of real space imaging and transport measurements, we show that the two-dimensional
vortex lattice in an a-MoGe thin film follows this sequence of melting as the magnetic field is increased.
Identifying the signatures of various transitions on the bulk transport properties of the superconductor, we
construct a vortex phase diagram for a two-dimensional superconductor.

DOI: 10.1103/PhysRevLett.122.047001

Ever since the seminal work [1] in which Berezinskii,
Kosterlitz, and Thouless (BKT) predicted the possibility of a
phase transition without breaking continuous symmetry in
two-dimensional (2D) systems, a lot of effort has been
devoted to explore its ramifications. 2D crystalline solids
present an interesting situation.Melting of three-dimensional
crystalline solids is understood through the “Lindemann
criterion,” where the solid melts through a first order phase
transition when the lattice vibration amplitude exceeds a
certain fraction of the lattice constant [2]. In contrast, for a 2D
solid, the BKT theory extended subsequently by Halperin,
Nelson, and Young (HNY) predicted that melting could also
proceed through an alternate route [3–5] via two continuous
phase transitionsmediated via topological defects. At the first
transition, thermally excited free dislocations proliferate in
the lattice, creating an intermediate state between a crystalline
solid and a liquid. At the second transition, dislocations
dissociate into isolated disclinations producing an isotropic
fluid. The intermediate state (called a hexatic fluid when the
solid has hexagonal symmetry) has zero shear modulus and
short-range positional order like in a liquid, but it retains the
quasi-long-range orientational order of the parent solid. Over
the years, there have been several attempts to test the
BKTHNY theory in diverse 2D systems such as electrons
over a liquidHe surface [6], inert-gasmonolayers adsorbedon
graphite, vortices in superconducting thin films [7–10], and
colloidal crystals [11–14]. Indeed, according to the various
experimental conditions, one can either prove the occurrence
of themelting transition at the expected value or the existence
of an orientational order when the translational one is lost, but
the simultaneous observation of the two features has so far
been available only in the case of colloidal crystals [12–14].

In a clean conventional superconductor, the vortices
arrange themselves into a hexagonal lattice, known as
the Abrikosov vortex lattice (VL) [15,16]. In general, the
vortices can meander along its length inside the super-
conductor, and therefore the VL is not strictly a 2D system.
However, in thin films, the thickness of the sample can be
orders of magnitude smaller than the characteristic bending
length of the vortices [7]. In this limit, the vortices behave
like point objects, and the VL behaves effectively like a 2D
hexagonal solid. The progress in low temperature scanning
tunneling spectroscopy (STS), which allows the imaging of
the VL over a wide range of magnetic fields [17], has
triggered efforts to directly observe the hexatic vortex fluid
state. However, this simple scenario is complicated by the
presence of additional ingredients. First, in crystalline
superconducting films, the VL can get strongly coupled
to the symmetry of the crystalline lattice [18–20], thereby
influencing its orientational order. Second, crystalline
defects and impurities create a random pinning landscape,
which can trap vortices at specific locations. Although the
first complicacy can be avoided in thin films of amorphous
superconductors, some degree of random pinning is practi-
cally unavoidable.
From a theoretical standpoint, random pinning can easily

destroy translational order, whereas its effect on orientational
order is weaker. At low fields, it is now accepted that, in the
presence ofweak pinning, theVL is in a solidlike phase called
Bragg glass [21–23], which has a long-range orientational
order and a quasi-long-range positional order. However, at
larger pinningdensity, thevortex state can become unstable to
dislocations, even in the absence of thermal excitations
[24–26], producing a hexatic glass. This disorder induced
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hexatic glass differs from a hexatic fluid because of the fact
that it has a nonzero shear modulus and the dislocations are
frozen in space [27], unlike thermally generated dislocations
in a hexatic fluid, which statistically appear at random
locations. Although transport [8] or magnetic shielding
measurements [7] can establish the melting of a Bragg glass
fairly accurately, establishing the hexatic nature of a vortex
state above the melting transition is not straightforward.
On the other hand, real space imaging such as STS can
identify a hexatic state from the quasi-long-range orienta-
tional order and the nature of topological defects [9,10,28–
30], but because the dynamics of thevortices in the fluid phase
can be extremely slow, it is not easy to distinguish between a
hexatic glass and a hexatic fluid.
In this Letter, we adopt a strategy that combines magne-

totransport and STS imaging to investigate the melting of
the VL in a very weakly pinned amorphous MoGe
(a-MoGe) thin film. The central result of this Letter is
that, as the magnetic field is increased, the vortex state goes
successively from a vortex solid to a hexatic fluid, and then
to an isotropic liquid following the sequence expected from
the BKTHNY theory.
In this study, we use a-MoGe thin films with thicknesses

of t ∼ 20 nm and Tc ∼ 7.05� 0.05 K, which are grown
through pulsed laser deposition. The pinning strength,
estimated from the depinning frequency of the vortex
lattice at low fields (∼35 kHz) is 6 orders of magnitude
smaller than the corresponding values for Nb [31] or
YBa2Cu3O7 films [32,33]. The very weak pinning is
further corroborated from the absence of any difference
in the ac susceptibility measured in field cooled and zero
field cooled states [34]. Further details are given in the
Supplemental Material [35]. Because of different require-
ments of shape and size, two samples with the same Tc and
a thickness variation of <10% were used for transport and
STS measurements. For STS, postdeposition, the film was
transferred in the scanning tunneling microscope using an
ultrahigh vacuum suitcase without exposure to air.
We first investigate the transition from vortex solid to

vortex fluid. Above a critical current, Ic, the Lorentz force
on the vortices exceeds the pinning force and a flux flow
regime is established. Here, the voltage is given by [43]
V ¼ RffðI − IcÞ, where Rff is the flux flow resistance that is
governed only by the viscous drag on individual vortices
and independent of pinning [44]. Thus, the I-V character-
istics for a vortex solid and a vortex fluid are similar for
I > Ic. The distinctive features of a vortex solid and
vortex fluid appear at I ≪ Ic, where a small but finite
voltage appears due to thermally activated flux flow
(TAFF) over the pinning barrier, U, giving a TAFF
resistance of RTAFF ¼ V=I ¼ Rff exp½−UðIÞ=kT�, where
k is the Boltzmann constant. For a vortex solid, UðIÞ
depends on current [22,45,46] as UðIÞ ¼ U0 � ðIc=IÞα,
such that RTAFF (and V) exponentially goes to zero for
I → 0. In contrast, in a vortex fluid [47], UðIÞ, and hence

RTAFF is independent of current at low currents. In Fig. 1(a),
we show Ic at 2 K in the magnetic field range of 0.9–5 kOe
obtained by fitting the linear flux flow region of the I-V
curves [Fig. 1(a), upper and lower insets]. To estimate
ρTAFF (I → 0), we investigate the I-V curve in the range of
I ¼ 0 − 100 μA ð≪IcÞ [Fig. 1(b)]. Up to 1.9 kOe, the
voltage is below our measurable limit; therefore, ρTAFF ≈ 0.
Above 1.9 kOe, the I-V curves show a finite linear slope
giving a finite ρTAFF. To further confirm that this field
corresponds to the vortex solid to vortex fluid transition, we
investigate the functional form of the I-V curves for I < Ic
[Fig. 1(c)]. Below the transition (1.5 and 1.8 kOe), the I-V
curves can be fitted very well with the form expected for a
vortex solid with α ¼ 1. In contrast, above the transition
(2.2 and 2.5 kOe), the I-V curves significantly deviate from
the exponential dependence. Instead, at low currents,
a linear slope appears below I ≈ 200 μA as expected for
a vortex fluid. The temperature dependence of ρTAFF
above and below the melting field is consistent with this
scenario [35].
To identify the nature of the vortex fluid, we use STS

imaging. To obtain VL images, spatially resolved tunneling
conductance [GðVÞ ¼ dI=dV] was measured at different
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FIG. 1. (a) Ic vs H at 2 K (black circles); in the same plot is I0,
the current below which V < 0.1 μV (red square). Upper inset
shows I-V curves at 2 K in different magnetic fields; some curves
omitted for clarity. Lower inset illustrates linear fit (red line) to
flux flow region from which Ic is determined. (b) ρTAFF as a
function of magnetic field (black circles) and calculated from the
low current region of I-V curves. Inset shows expanded view of
I-V curves below 100 μA. (c) I-V curves for I < Ic for four fields
spanning vortex solid to vortex fluid transition. Red lines show fit
to TAFF equation with U ¼ U0 � ðIc=IÞ (U0 is an adjustable
parameter). Blue lines are linear fit to I-V curves below 100 μA.
Insets of the upper two panels show same data in semilog
scale, and insets of lower two panels show expanded view of
linear fit.
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fields using a Pt-Ir tip. The vortex core in a superconductor
behaves like a normal metal in which both the gap and the
coherence peak in the local density of states are suppressed.
Consequently, when the bias voltage, V, is kept close to the
superconducting coherence peak, each vortex manifests as
a local minima [19,29,30] in GðVÞ. Figures 2(a)–2(f) show
representative large area VL images at 2 K along with their
2D Fourier transforms (FTs). We obtain the precise
positions of the vortices from the local minima in the
conductance map and identify the topological defects by
Delaunay triangulating the VL. At 1 kOe, we observe a
hexagonal VL without any topological defects. Above
3 kOe, we observe free dislocations in the VL as expected
for a vortex fluid. However, up to 70 kOe, the FT shows six
spots, showing the existence of a sixfold orientational
order. Above 70 kOe, the FT transforms into a ring
corresponding to an isotropic vortex liquid. Because
topological defects are free to move in a fluid, we expect
the defects to appear at different locations when the VL is
imaged at different times. In Fig. 3, we show three
successive images of the VL captured over the same area,
where the time to acquire each image is 1.5 h. In each
image, dislocations appear at a different location and
sometimes disappear from the field of view. Thus, our
data are consistent with a hexatic vortex fluid below
∼70 kOe and an isotropic vortex liquid at higher fields.

An important property of the hexatic fluid is that the
motion of vortices should happen preferentially along
the principal direction of the VL. To explore this, we
follow the motion of the vortices on a finer scale by
capturing a series of 12 successive images over the same
area at 15 min intervals [Figs. 4(a)–4(i)]. Because no drive
is applied here, the motion of the vortices is caused by
stress relaxation of the VL. The stress in the VL could in
principle be of two kinds: a residual global stress when the
VL has not yet reached its true equilibrium, or local stress
in the lattice caused by the appearance of short-lived
dislocations. Although, in our sample, the global stress
is unlikely to be an issue due to the very weak pinning
nature of the film, as an added precaution, we apply several
magnetic field pulses of 0.3 kOe before the data are taken.
In the vortex solid phase (1 kOe; see Supplemental Material
[35]), each vortex only undergoes a small wandering
motion about its mean position. In the hexatic fluid
(3 and 55 kOe), we observe that, although the motion of
individual vortices is irregular and follows a jagged
trajectory, over a longer timescale, all vortices within the
field of view preferentially move along one of the three
principal directions of the VL. This regularity of motion is
disturbed in the vicinity of locations in which topological
defects appear, where the movement becomes more ran-
dom. On the other hand, at 85 kOe, the motion becomes
completely random, as expected for an isotropic fluid.

1 kOe
(a) (b) (c)

(d) (e) (f)

3 kOe 10 kOe

55 kOe 70 kOe 85 kOe

nm nm nm

nm nm nm

0.020.02 0.05

0.1 0.1 0.1

FIG. 2. (a)–(f) Representative vortex images at 2 K for different
magnetic fields. Vortices (shown as black dots) appear as minima
in conductance map recorded at a fixed dc bias: Vb ¼ 1.52 mV.
VL is Delaunay triangulated to find topological defects (denoted
as red, green, magenta, and yellow dots) corresponding to five-,
seven-, four-, and eightfold coordinations. Above each vortex
image is the 2D FT of image; the scale bar is in nm−1.

FIG. 3. (a)–(c) Three consecutive vortex images captured at
same location at 2 K for 3, 25, and 55 kOe, respectively. Color
scheme for vortices and defects is the same as in Fig. 2.
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To quantify the orientational order of the vortex state, we
now compute the sixfold orientational order parameter [48],
which is defined as Ψ6 ¼ ð1=NÞhPk;le

½6iðϕk−ϕlÞ�i; here, ϕk

is the angle between a fixed direction in the plane of the VL
and the kth bond, and the sum runs over all the bonds in the
VL. Ψ6 ¼ 1 for a perfect hexagonal lattice. To improve the
statistics, we average over the series of 12 images. In
Fig. 5(a), we plot themagnetic field variation ofΨ6 at 2K.Ψ6

remains finite up to 55 kOe and abruptly drops to a small
value above 70 kOe, signaling the transition from a hexatic
fluid to a vortex liquid [49]. On the same plot, we show ρlin
extracted from the linear slope of the I-V curve below
100 μA. Above 70 kOe, ρlin increases rapidly, reflecting the
increased mobility of the vortices as the system enters the
isotropic vortex liquid state and then saturates to the normal
state value of ρN ∼ 1.51 μΩm. Consequently, we define the
transition from the hexatic vortex fluid to isotropic liquid
from the magnetic field, where ρlin starts to increase; and we
defineHc2 as the fieldwhere ρlin ≈ 0.95ρN , with the error bar
given by the magnetic field interval at which the data are
taken.We note that, above 80 kOe, Ic becomes small and we
cannot unambiguously identify ρlin with ρTAFF. At low
temperatures, we also observe a shallow minimum in ρlin,
which is reminiscent of the more pronounced “peak effect”
observed at the order-disorder transition in thicker samples
[50]. This can be understood within the collective weak
pinning scenario [51], in which the orientational stiffness
modulus (Frank constant) [13] of the hexatic vortex fluid

plays the role of the shear modulus and the length scale
analogous to the Larkin length, Rc, is given by the average
length scale of dislocation free regions governed by dis-
location density [35].
We can now use the ρlin-H variation at different temper-

atures [Fig. 5(b)] to construct the phase diagram in theH-T
parameter space [Fig. 5(c)]. It is interesting to note that both
the solid-hexatic fluid and the hexatic fluid-vortex liquid
phase boundaries keep increasing in field down to the
lowest temperature, as expected for the thermal melting
transition [8], instead of flattening out at low temperatures,
as often observed when the order-disorder transition is
driven by disorder [22,52]. Further investigation is needed
to determine to what extent this phase diagram could be
generic, for example, in thin crystalline superconductors
(such as monolayer [53] NbSe2) or for the quasi-2D VL in
layered high-Tc cuprates [54]. Finally, we would also like
to note that, although we have used the magnetic field
(or, alternatively, the density of vortices) as the tuning
parameter, one would also expect to observe the two-step
melting as a function of temperature. However, it might be
more difficult to observe the transition as a function of
temperature in imaging experiments because the contrast in
STS images becomes poor at elevated temperatures.
In summary, we have shown a clear demonstration of the

BKTHNY type two-step melting of the 2D vortex lattice in
a very weakly disordered a-MoGe thin film. We believe
that the simplicity of the system combined with the ability
to investigate the static and dynamic response of the VL
using different probes, such as high frequency conductivity

FIG. 4. (a)–(c) First image of 12 consecutive vortex images at
2 K for 3, 55, and 85 kOe, respectively. Color scheme for vortices
and defects is the same as in Fig. 2. Figures 4(d)–4(f) are arrow
maps for each field, in which each arrow gives displacement for
every vortex through individual steps of 12 consecutive vortex
images. Red boxes in arrow maps are enlarged in Figs. 4(g)–4(i).
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FIG. 5. (a) Variation of Ψ6 and ρlin as function of magnetic field
at 2 K. Representative error bar on Ψ6 is shown on 40 kOe data
point. Vertical dashed line demarcates hexatic fluid from vortex
liquid. Horizontal orange line shows normal state resistivity, ρN .
(b) ρlin vs H at different temperatures; horizontal dashed line
denotes normal state resistivity. (c) Phase diagram showing
vortex solid, hexatic fluid, and vortex liquid phase in H-T
parameter space. Vortex solid and hexatic fluid phase boundary
is multiplied by 10 on magnetic field axis for clarity.
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and precision magnetometry, will pave the way to a more
detailed understanding of defect driven phase transitions.
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