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The motion of dislocations bridges the atomistic-scale deformation events with the macroscopic strength
and ductility of crystalline metals. In particular, screw dislocations, whose Burgers vector is parallel to the
line, play crucial roles on plastic flow. Nevertheless, their speed limit and its stress dependence remain
controversial. Using large-scale molecular dynamics simulations, we reveal that full screw dislocations and
twinning partial screw-type dislocations can glide steadily at the speed of shear wave velocity. Such a
scenario is excluded in existing theories due to energy dissipation singularity. We conclude that both types
of screw dislocations can move supersonically. We further observe that the motion of a screw dislocation
also depends on the shear stress components, which do not contribute to the resolved shear stress (RSS), in
contrast to the conventional Schmid’s law, which states that the motion of a dislocation is determined by
the RSS.

DOI: 10.1103/PhysRevLett.122.045501

When a force exerted to a dislocation line is parallel to its
slip plane and in the direction of the Burgers vector, the
dislocation may glide if the resultant stress exceeds the
critical resolved shear stress (RSS). The plasticity in
crystalline metals depends on the collective motion of such
dislocation lines [1–3], which governs the strength and
ductility, as well as the dynamic behavior of crystalline
materials [4–7]. What is unique to dislocation motion is
the acoustic wave propagations of the elastic media
where dislocations reside. When dislocations move
supersonically—namely, at a velocity greater than the shear
wave velocity for screw dislocations and greater than the
longitudinal wave velocity if the dislocations are of pure
edge type—they radiate sound waves and intake singular
energy dissipation based on general elasticity theory [8].
Mathematically, a singular radiation-free state does exist for
edge dislocations gliding supersonically in isotropic solids
[9]. Further analysis predicted the existence of supersonic
dislocations [9–14]. It is noted that a smeared-out treatment
[10,12–14] to dislocation reduces the stress singularity, but it
brings in additional parameters to describe the infinitesimal
dislocation distribution. That leads to the long-standing
debate on the speed limits of dislocations.
In contrast to the theoretical analysis, modeling the

physical state of dislocation motion using faithful atomic
interaction may circumvent the limitation of elasticity
theory and shed light on the kinetics of dislocations
[15–18]. Gumbsch and Gao [19] first showed stable edge
dislocations with transonic and supersonic velocities in
their computational study. Combined with other reports

[20–23], it was found that, under sufficiently high RSS, an
edge dislocation can break the shear wave barrier and move
faster than the longitudinal wave velocity, supported by
recent experiments [24,25]. Such high speed dislocations
can introduce deformation transition from dislocation
motion to deformation twinning in conventional high
stacking fault metals [6]. Most studies, however, dealt
with edge dislocations and those on screw ones are rarely
seen. It is believed that a screw dislocation will suffer
instability when its traveling speed approaches the shear
wave speed [18,26]. The difficulty to observe supersonic
screw dislocations in both experiments and simulations
casts doubt on the theory predicting the existence of
supersonic screw dislocations. Because of their over-
whelming contribution to the plasticity in crystalline
materials, the kinetics of screw dislocations is crucial to
the dynamic response of materials [4].
A detailed description about the simulation is supplied in

the Supplemental Material Note 1 [27]. A dipole of perfect
screw dislocations (SDs) is generated by a procedure
illustrated in Fig. 1(a). Given the significance of twinning
partials in deformation twinning [34,35], we also explore
the dynamics of a Twinning screw partial dislocation
(TSPD) residing in twin boundaries. Atomic structures
of SDs and TSPDs are shown in Fig. S1 [27]. After
relaxation, a perfect SD splits into two Shockley partials
bounded by a stacking fault (SF) in between, following the
reaction ða=2Þ½11̄0� ¼ ða=6Þ½12̄1� þ ða=6Þ½21̄ 1̄� þ SF (see
Supplemental Material Note 2 and Fig. S2a [27]). Note that
the Burgers vector of the TSPD is the same as the
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dissociated SD but stacking fault free. The displacement
mismatch between the neighboring intact layer and the
dislocated layer characterizes the core structure of the
dissociated SD and the TSPD, as seen in Figs. 1(b) and
1(c). The dislocation core can also be featured by the misfit
density, as Fig. S2 [27] shows. Detailed atomistic structures
of the dislocations before and after relaxation are illustrated
in Fig. S3 [27].
We adopted the classical anisotropic elasticity theory of

straight dislocations to capture the stress field of screw
dislocations (see Supplemental Material Note 3 [27]). In
Figs. 1(d) and 1(e) we demonstrate the theoretical pre-
dictions of stress components σyz; σxz, respectively, where
we ignored the dissociation for simplicity, as the disso-
ciated edge part only induces short-range stress fields [see
Figs. 1(h)–1(k)]. As a comparison, the stress fields σyz; σxz
from direct MD simulations are plotted in Figs. 1(f) and
1(g), respectively. The other four stress components
σxx; σyy; σzz; σxy introduced by a SD are shown in
Figs. 1(h)–1(k); those stress components are secondary
and their magnitude decreases progressively with the
distance to the dislocation core. The static stress fields
from theoretical prediction and MD simulations shown in
Fig. 1 demonstrate the accuracy of the atomistic interaction.

In contrast, the stress from the edge part becomes signifi-
cant in TSPD, and we show the six stress fields of the TSPD
from theory andMD simulations in Figs. 1(l) and 1(m). The
presence of the twin boundaries make those stress fields
change dramatically. In contrast to the negligible medium-
to long-range stress fields, i.e., σxx; σyy; σzz; σxy for a
perfect SD, those introduced by the TSPD are nonlocal.
This behavior may subsequently influence the activities of
deformation twinning accommodated by such twinning
partials.
We apply a shear deformation εyz to the simulation box,

which drives the dislocation to glide along the x direction.
Figures 2(a) and 2(b) show travel distance and velocity
curves for both types of dislocations during shearing. For
the SD, the curves of the leading and the trailing partials are
plotted separately. As a reference, we have calculated the
three shear wave speeds in Cu by solving the wave equation
in anisotropic elastic media (see Supplemental Material

Note 4 [27]) and obtained v½110�s1 ¼ 1.63, v½111�s ¼ 2.16,

and v½100�s ¼ v½110�s2 ¼ 2.92 km=s.
From Fig. 2(a), we see that the SD first accelerates in

response to the rising of shear strain. When its velocity
reaches v½110�s1 , the acceleration drops while the velocity
continues to increase toward the second shear wave speed

v½111�s , followed by a velocity jump. Then the dislocation
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FIG. 2. Motion of screw dislocations under shear straining.
(a) Travel distance vs strain (red) and velocity vs strain (blue)
of the SD. (b) Motion of a TSPD. Here v½110�s1 ¼ 1.63,

v½111�s ¼ 2.16, and v½100�s ¼ v½110�s2 ¼ 2.92 km=s are three shear
wave speeds in single crystal copper. (c) Stacking fault width
d (red) of the SD and the stress-strain relation (blue) as a function
of straining, where d0 is the stacking fault width at a stress-free
state. (d) Snapshots of stacking fault width corresponding to
points keyed in (c), and atoms are colored by the common
neighbor analysis method.
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FIG. 1. Structures and stress fields of perfect screw dislocations
and twinning screw partial dislocations. (a) Illustration of the
generation of a SD dipole and the coordinates defined by the
crystallographic orientations x ¼ ½112̄�; y ¼ ½111�; z ¼ ½11̄0�. (b),
(c) Normalized displacement shift ϕ between the gliding plane
and the glided plane nearby the dislocation core (b) for the SD
and (c) for the TSPD. Here be and bs are the magnitude of the
edge and screw part of the Burgers vector. The theory (solid lines)
matches well with simulations (circles). (d)–(k) Stress fields of
the full screw dislocation: σyz from theoretical prediction (d) and
simulation (f); σxz from theoretical prediction (e) and simulation
(g); Other four stress components σxx; σyy; σzz; and σxy from
simulation are shown in (h)-(k). (l) The respective stress fields
σxx; σyy; σzz; σxy; σyz; and σxz of the TSPD from theoretical pre-
diction and (m) MD simulations. (Scale bar ¼ 15 nm.)
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moves steadily at a speed slightly above v½111�s . Further
straining can drive both partials of the SD moving faster

than the third shear wave speed v½100�s , i.e., supersonically.
At εyz ≥ 12%, massive nucleated dislocations appears in
the sample. As seen from the stress-strain curve in Fig. 2(c),
the applied shear strain εyz induces two shear stress
components σyz and σxz due to elastic anisotropy. The
travel distance (red) and velocity (blue) curves of the TSPD
residing in a twin boundary, as seen in Fig. 2(b), demon-
strate that TSPD can also move beyond the “limiting”
supersonic wave speed (see Supplemental Material Note 5
and Fig. S5 [27]), regardless of the significant difference in
stress fields between the SD and TSPD (see Fig. 1). It is
emphasized that the stress levels when the dislocation
reaches the shear wave velocities are below the material’s
ideal strength, as seen in Fig. S4 [27].
The leading partial and the trailing partial of the SD

behave distinctly after shearing. That causes the variation of
the stacking fault width d, as detailed in Figs. 2(c) and 2(d).
Both the equilibrium shape and width d0 can be well
captured by Eqs. (S1) and (S2) [27]. In the accelerating
region, the velocities of both partials increase continuously
but the SF may change substantially. It can shrink till there
is only one layer of atoms between two partials (d ∼ 6 Å),
as seen in points 1 and 2 in Fig. 2(c). When the velocity

reaches the shear wave speed v½111�s at ∼6% strain, d
increases suddenly as the dislocation passes the second
shear wave speed, as shown at point 3 in Fig. 2(c), and then
decreases again, shown at point 4 in Fig. 2(c), which is
consistent with the previous observation [26]. It is noted
that, not only is the SF width a function of the velocity, but
also the dislocation core width depends on the dislocation
velocity; the change of the latter is rather small and so the
corresponding information is not shown. In Figs. 3(a)–3(f),

we show the velocity field v induced by the moving SD at
different speeds. When the dislocation moves supersoni-
cally, a Mach cone is clearly generated [Fig. 3(f)].
Based on the continuummechanics prediction, a singular

energy dissipation would be required to sustain a disloca-
tion moving at the shear wave speed. We examine the
validity of this continuum prediction. We first apply shear
to the samples at the strain rate of 2 × 109=s until the

velocity of the SD reaches the shear wave speed of v½100�s .
We then maintain the shearing load constant to see whether
the velocity of the dislocation is stable. As seen in Fig. 4 for

the SD, dislocations can move steadily at v½100�s . To check
the robustness of the results, we performed three calcu-
lations for each type of dislocation by keeping its velocity

at three scenarios: slightly slower than v½100�s , equal to v½100�s ,

and slightly faster than v½100�s . The exact values are keyed in
Fig. 4(a), and the respective atomic velocity contours of the
SD are shown in Figs. 4(b)–4(d). The relation between the
velocities is obtained from the Mach cone. Those results
indicate that a SD can move steadily at the shear wave
speed, which breaks the conventional conclusion from
continuum elastic theory. This discrepancy may originate
from the fact that the atomic structure of a dislocation core
is discrete in nature where there is no singularity, in contrast
to that assumed in continuum. Consequently, the barrier
energy for a dislocation that moves at the shear wave speed

v½100�s is finite and attainable. As a comparison, we also
explore the motion of the TSPD at the shear wave speed. As
seen in Fig. S6 [27], the TSPD can move steadily at the
shear wave velocity as well.
When applying a shear strain εyz, we induce two shear

stress components, σyz and σxz, due to elastic anisotropy
[Fig. 2(c)]. Although σxz does not contribute to the RSS as
predicted by Schmid’s law [36], which is a foundation of
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FIG. 3. MD snapshots of the SD at different velocities. (a) Fast acceleration at v ¼ 0.8 km=s. (b) Slow acceleration at v ¼ 1.8 km=s.

(c), (d) The first velocity jump across the shear wave speed v½111�s : (c) trailing partial glides slower than leading partial, (d) trailing partial

catches up with the leading partial. (e) Steady motion at v ¼ 2.36 km=s, which is faster than v½111�s . (f) Supersonic motion with
v ¼ 3.1 km=s, where a shock wave induced by the dislocation is clearly seen. The corresponding shear wave velocity of each Mach
cone is marked. (Scale bar ¼ 8 nm.)
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plasticity theories in dislocation dominated mechanisms
[3,37,38]; it also alters the dislocation motion. For three-
dimensional stress states, the resolved shear stress τRSS is
calculated as τRSS ¼ m · ðσ · nÞ, where n ¼ ð0; 1; 0Þ is the
slip plane normal and m ¼ ð0; 0; 1Þ is the direction of the
dislocation’s Burgers vector. Using Schmid’s law, we see
that only σyz contributes to τRSS for the screw dislocations
in Fig. 1(a), implying that this stress component is
responsible for the motion of dislocations in the prescribed
slip system.
To identify whether the stress components σxz also alters

the dislocation motion, a quasi-NPT ensemble is employed.
We first increase σyz and then keep σyz at a constant value

so that the dislocation moves at a velocity v < v½110�s1 . After a
transient stage, the dislocation glides steadily at a constant
velocity. We then apply σxz from 0 to 2 GPa and see how it
may change the dislocation speed. By simulating different
σyz (from 50 to about 600 MPa), we construct in Fig. 5 the
dislocation velocity profile at different combinations of σyz
and σxz. Although σxz does not contribute to the resolved
shear stress, its influence on the dislocation mobility is
considerable. This is clear evidence of the non-Schmid
behavior of the dislocation.
As proposed by Qin and Bassani [39], the generalized

stress measure τ� in a particular slip system is linearly
combined by the resolve shear stress and the non-Schmid
stresses as τ� ¼ τRSS þ

P
iaiτi, where τi are the non-

Schmid stress components and ai are their weighting
coefficients. We examine the physical mechanism behind
the non-Schmid effect in an anisotropic crystal with our

simulation results. In the coordinate given in Fig. 1(a),
we have the following shear stress and shear strain
relationship:

�
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As the deformation along the dislocation line is
negligible, we have ð∂=∂zÞ ¼ 0; hence, εyz ¼ ð∂uz=∂yÞ,
εxz ¼ ð∂uz=∂xÞ. The inverse of Eq. (1) is written as
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where Sij are the components in the compliance tensor
S ¼ C−1. The anisotropic parameter A is defined as A ¼
½ðC11 − C12Þ=2C44� and A ¼ 1 for isotropic solids. For the
screw dislocation, the strain ∂uz=∂y dominates dislocation
motion as it supplies the regular driving force τ�, which is
proportional to ∂uz=∂y; meanwhile, ∂uz=∂x contributes to
the driving force τcs for the tendency of cross slip. The
relationship of both stress componentswith the applied stress
could be determined from Eq. (2), i.e., τ� ∝ ð∂uz=∂yÞ ¼
S55σyz þ S56σxz and τcs ∝ ð∂uz=∂xÞ ¼ S56σyz þ S66σxz.We
then obtain the effective resolved shear stress as

τ� ¼ σyz þ
S56
S55

σxz: ð3Þ

This relationship is obtained with the consistent condition
that τ� ¼ σyz if A ¼ 1. We focus on demonstrating the
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nonzero component in Eqs. (1)–(3) for screw dislocation
motion as other stress components σxx; σyy; σzz; σxy have
negligible influence on screw dislocation motion. The
component σxy does change the stacking fault width as it
influences themotion of the edge part in theMDsimulations,
since all complete screw dislocations will decompose into
two partials with a stacking fault in between. Equation (3)
reflects the nature of the non-Schmid effect in anisotropic
crystals. For Cu, we yield τ� ¼ σyz − 0.42σxz. It is suggested
that Eq. (3) should be used to replace the broadly used
definition to calculate the RSS of Cu in current crystal
plasticity models, where the accuracy of the Schmid law is
taken for granted.
To summarize, we reveal that a screw dislocation can

move supersonically. We find that screw dislocations can
glide steadily at the shear wave speed, and this observation
overthrows the long-standing conventional theory that the
energy dissipation for a screw dislocation moving at the
shear wave speed becomes infinite, and is hence impos-
sible. It is found that the stress component that does not
contribute to the RSS affects the dislocation motion
dramatically. The findings reported here address the
long-standing debate whether a SD can glide steadily at
the shear wave speed or even supersonically and pave the
way of better understanding to the dynamic behavior of
crystalline materials [40].
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