
 

Juggling with Light
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We discovered that when a pair of small particles is optically levitated, the particles execute a “dance”
whose motion resembles the orbits of balls being juggled. This motion lies in a plane perpendicular to the
polarization of the incident light. We ascribe the dance to a mechanism by which the dominant force on
each particle cyclically alternates between radiation pressure and gravity as each particle takes turns
eclipsing the other. We explain the plane of motion by considering the anisotropic scattering of polarized
light at a curved interface.
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The idea of using light to propel particles has been a
topic of study as early as the 17th century when Johannes
Kepler hypothesized that solar radiation was responsible
for pushing a comet’s tail away from the sun. Light
propulsion regained great relevance in the 1970s when
Arthur Ashkin discovered optical tweezers. In a series of
seminal articles, Ashkin laid down the experimental,
conceptual, and theoretical framework for his discovery
[1–6]. Yet one of his notable observations is barely
known. In an article published over 40 years ago [4],
he noticed that a levitating laser beam can propel a pair of
droplets equal in size to come side by side and briefly
touch before they coalesce. Unable to further pursue this
research with the technology of his time, Ashkin urged
researchers to resolve the puzzle of the colliding droplets
with high-speed photography. Recently, there has been
renewed interest in this attempt [7–9]. Notably, Moore
et al. [8] have observed oscillations of two silica particles
for up to a few minutes. We were able to finally achieve
the demanding spatial and temporal resolutions necessary
to observe the droplet motion by constructing an optical
levitation setup that includes a long-distance microscope
and high-speed movie camera. To our amazement, we
discovered that instead of colliding directly, pairs of
droplets will frequently execute a “dance” (see Movie 1
in Supplemental Material [10] for a movie of the droplets
juggling in a laser beam) that may last for up to half an
hour during which the droplets move in well-defined
planar orbits (Fig. 1). We call this optical juggling as the
motion resembles the orbits of balls being juggled by a
carnival performer [14]. What is responsible for these
intricate movements, and what determines the plane in
which they lie?
Our experiment (Fig. 2 and Supplemental Material

[10]) is similar to Ashkin’s original experiment [2–4].

We use a lens L of 5.0 cm focal length to focus 1.0 W of a
532 nm continuous wave vertical laser beam B. The beam
intensity profile is Gaussian and its initial diameter is
0.85� 0.1 mm. The beam is linearly polarized with a
polarization direction that can be rotated in the XY plane
using a half-wave plate H. Unless we state otherwise, the
beam polarization is set to be in the X direction. The beam
enters an air-filled aluminum chamber C through a bottom
window W. A piezoelectrically controlled nozzle N
sequentially produces droplets from a mixture containing
90% by volume of distilled water and 10% of glycerol.
The nozzle produces droplets that are naturally charged,
through a process known as electrostatic spraying [15].
The tip of the nozzle is inserted into the chamber through a
5-mm-diam small hole on an aluminum sheet S covering
the top of the chamber. The droplets settle slowly by
gravity into the laser beam where they are levitated. Water
evaporates during the descent, and by the time the droplet

FIG. 1. (a) An image of a pair of optically levitated glycerol
droplets and (b) their trajectories. The beam polarization vector is
perpendicular to the page. Arrows indicate the instantaneous
velocity at the snapshot of time corresponding to panel (a). The
color bar indicates time in milliseconds.
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is captured by the beam, the droplet is mostly glycerol
with a steady diameter of 28.6� 2.1 μm. An LED light
source D illuminates the droplets from the side and casts
the shadow of the droplets into the collecting lens of a
long-distance microscope M. A notch filter F in front of
the microscope blocks light scattered from the levitating
laser beam. A high-speed movie camera is arranged at a
right angle to the beam polarization to capture the motion
of the droplets in the XZ plane at a frame rate of 45 kHz
and a spatial resolution of 1.72 μm per pixel. A second
set of LED, microscope, and camera is arranged at a right
angle to the first to synchronously capture the droplet
motion in the YZ plane. In total, we captured 61 juggling
events.
The droplets dance in beautiful patterns (Fig. 1). With a

head-on collision, the droplets begin by leapfrogging down
the beam, before eventually overcoming their surface
energy barrier to coalesce (see Movie 2 in Supplemental
Material [10] for an observation of the droplets coalescing
in the laser beam). The combined droplet is levitated at a
new height below the center of mass of the two initial
droplets. With a grazing collision, the droplets also begin
with leapfrogging, but they gradually converge to juggling
at a stable elevation (see Movie 3 in Supplemental Material
[10] for an observation of the formation of juggling
movement). When the droplets are juggled, they eventually
settle in orbits in the same vertical plane that contains the
beam axis and perpendicular to the initial polarization
vector. The droplets move in pea-shaped orbits. Each orbit
measures approximately one droplet diameter in width and
two diameters in height. When the droplets come side by
side, their separation is about one diameter. We measured
the droplet trajectories and found that the droplets expe-
rience velocities as great as 40% of their terminal velocity
and accelerations as high as 0.3g. We analyzed the droplet
velocity spectra and obtained an orbital frequency of
33.9� 2.7 Hz, in good agreement with a period of
27.7� 1.3 ms obtained from the velocity autocorrelations.
Since liquid droplets in air experience little random thermal

fluctuations, the droplets are able to juggle for as long as
30 min, in excess of 60 000 repetitions prior to coalescence.
How light juggles matter is summarized by the principle

that light directs the flow of matter; matter directs the
bending of light [16]. Consider two dielectric spheres of
mass m subject to the gravitational force mg and a short-
range repulsive interaction (Fig. 3). A beam of light with
Gaussian intensity profile illuminates the particles. The
incident light is linearly polarized along the vector E and
propagates upward with wave vector k. Initially, particle 1
is centered slightly to the left of the centerline and particle 2
slightly to the right, with particle 1 above particle 2
[Fig. 3(a)]. In this configuration, particle 1 is eclipsed by
particle 2. This obstruction prevents particle 1 from
receiving sufficient light to overcome gravity, and it falls.
The left-hand side of particle 1, which is further from
the centerline, receives more light, so the gradient force [5]
pushes the particle further away from centerline.
Consequently, particle 1 moves down and to the left.
Since particle 2 is close to the centerline, the upward
optical force outweighs the downward gravitational force,
so particle 2 moves upward. Particle 1 moves out of the
shadow of 2 [Fig. 3(b)], the right-hand side, which is closer
to centerline, receives more light, and the gradient force
now pushes particle 1 back towards the centerline. Particle
2 is still close to the centerline and continues to move
upward. This leads us to Fig. 3(c), where 2 has risen above
1. Particle 1 has returned to the centerline, where it casts its
shadow on 2. The particle positions in parts 3(a) and 3(b)
are now mirrored in parts 3(c) and 3(d) by interchanging
particle 1 with particle 2, and left with right. After Fig. 3(d),
we end up back to the configuration shown in Fig. 3(a).
This process repeats indefinitely and resembles the motion
of balls being tossed in a fountain pattern by a carnival
juggler [14].

FIG. 2. The labels denote laser beam (B), aluminum chamber
(C), LED light source (D), notch filter (F), half-wave plate (H),
focusing lens (L), microscope (M), piezoelectric nozzle (N),
aluminum sheet (S), and windows (W). The beam polarization is
set to be in the X direction.

FIG. 3. Two particles juggling in a beam of light propagating
with wave vector k and polarization vector E. Black arrows
denote gravity, while red or blue arrows denote the optical forces.
The blue Gaussian curve at the bottom denotes the beam intensity
profile. (a) Particle 1 is eclipsed by particle 2, it experiences less
light and falls, while the unobstructed particle 2 receives more
light than its weight and rises. (b) Particle 1 is no longer eclipsed
by particle 2, the gradient force pushes it back towards the
centerline. Particle 2 continues to move upward. In panels (c) and
(d), the roles of particle 1 and 2 reverse.
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Let us develop this physical picture into a more quanti-
tative description. Consider two glycerol droplets of diam-
eter D ¼ 28 μm, density ρ ¼ 1.26 × 103 kgm−3, index of
refraction n2 ¼ 1.47 and charge Q ¼ −1.6 × 10−15 C [17]
immersed in a dielectric medium (air) of permittivity
ϵ ¼ 8.9 × 10−12 Fm−1, gravity g ¼ 9.81 ms−2, dynamic
viscosity η ¼ 1.85 × 10−5 Pa s, and index of refraction
n1 ¼ 1. The optical forces, gravity, hydrodynamic, and
electrostatic interactions act together to choreograph the
dance. Characteristic values for the forces indicate that
optical forces and gravity outweigh both hydrodynamic and
electrostatic forces. Clearly, the dominant force must
cyclically alternate between optical forces and gravity.
Using this information, we constructed the following
model. The two droplets obey Newtonian mechanics:

m
dvðiÞ

dt
¼ FðiÞ

G þ FðiÞ
H þ FðiÞ

Q þ FðiÞ
O ði ¼ 1; 2Þ: ð1Þ

The gravitational force is given by FðiÞ
G ¼ −k̂πρgD3=6. The

hydrodynamic force is given by the Stokes drag containing
the lowest order rigid-sphere interaction term [18]:

FðiÞ
H ¼ 3πηD

�
−vðiÞ þ

X2
j≠i

3D
8rij

�
I þ rijrij

r2ij

�
· vðjÞ

�
: ð2Þ

Here rij ¼ ri − rj is the separation vector between the two
droplets, v is the droplet velocity, and I is the 3 × 3 identity
matrix. The electrostatic interaction between the two
identically charged droplets is given by Coulomb’s law:

FðiÞ
Q ¼

X2
j≠i

FQrij
rij

�
D2

r2ij

�
; ð3Þ

where FQ ¼ Q2=ð4πϵD2Þ is the force scale of the electro-
static interactions. To compute the optical forces FðiÞ

O , we
apply the ray tracing approach [6]. The light source in our
model is a divergent beam of power P ¼ 1.0 W and half
angle σ ¼ 8.5 × 10−3 rad. The light intensity profile is
Gaussian: IðrÞ ¼ P exp½−r2=ð2w2Þ�=ð2πw2Þ, where r is
the distance to the centerline. Setting the beam waist at
z ¼ 0, the beam width varies with z as w ¼ σz. We
decompose this beam into several rays which reflect and
refract at the air-glycerol interface following the Fresnel
equations [6]. By calculating the momentum change of the
incoming versus outgoing rays, we obtain the optical forces
on each droplet. Since the rays leaving the surface of
droplet 1 may further strike the surface of droplet 2, we also
add their contributions to the net force of droplet 2, and vice
versa. We integrate the droplet equations of motion in
Eq. (1) to obtain the trajectories (Fig. 4 and see Movie 4 in
Supplemental Material [10] for a simulation of droplets
juggling in the laser beam). By analyzing the droplet
velocity spectra, we obtain an oscillation frequency of
32.5� 2.0 Hz. This corresponds to an orbital period of

30.8� 1.1 ms obtained from the velocity autocorrelations,
in good agreement with the experimentally measured value.
Having established that the model outlined above was in

agreement with experiments, we were curious to test it
against another effect we also observed. We had noticed
that the droplets eventually settle in orbits in the same
vertical plane that depends only on the direction of the
polarization vector. In a separate experiment, we placed a
half-wave plate in the path of the incident laser beam to
rotate the polarization vector of light at a constant speed.
When the half-wave plate continuously rotated through 45°
the polarization vector continuously rotated through 90°.
We observed that the droplets continue to juggle while their
plane of motion continuously rotates about the beam axis
(see Movie 5 in Supplemental Material [10] for an
observation of the rotation of droplet orbits by rotating
the polarization vector of light). The rotation ceased when
the plane of motion lay perpendicular to the polarization
vector.
Our model accounts in a natural way for the plane of

motion. We illustrate the principal mechanism with Fig. 5.
We show two representative, linearly polarized rays propa-
gating with equal power [Fig. 5(a)]. They scatter at the
interface of an off-center particle with different polarization
direction. The ray propagating from P is p polarized,
whereas that from S is s polarized. The gradient force is
directly proportional to the transmitted power [6], so
Fgrad ∝ T2, where T is the transmittance. Because the
transmittance of the p-polarized ray is greater than the
s-polarized ray [Fig. 5(b)], the net gradient force will
restore the off-center particle to the centerline while
pushing the particle more towards the plane perpendicular
to the polarization vector (which we term the s plane) than
towards the p plane. This is the main mechanism which
leads to the orbits settling in the s plane.
To test the mechanism of alignment, we rotated the

polarization vector of the incident light at a constant speed

FIG. 4. Horizontal (y) and vertical (z) axes are distances
measured from the beam waist at origin. The beam polarization
vector is perpendicular to the page. Arrows indicate the instanta-
neous velocity of the particles. The color bar indicates time in
milliseconds.
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in our model. We observed that the particles gradually
adjust their trajectories to lie on a plane that rotates with
the polarization vector (see Movie 6 in Supplemental
Material [10] for a simulation of droplet motion in a beam
with rotating polarization vector). To understand the
stability of the alignment, we calculated the tangential
component of the gradient force FT (that pushes
perpendicular to the position vector r) of a 28 μm glycerol
droplet as a function of the position vector r [Fig. 5(c)]. The
droplet is placed at a typical height of z ¼ 2.6 mm from the
beam waist. At any point on the p plane (containing the
wave vector k and the initial polarization vector E) the
tangential force diminishes. The droplet, however, is in
unstable equilibrium. As soon as the droplet deviates from
this plane, the tangential force pushes the droplet in the
direction of k × rsgnðtan θÞ, where θ is the polar angle of
the position vector r from the x axis. When the droplet lies
on the s plane (containing the vectors k and k × E) the
tangential force again diminishes. On this plane, the droplet
is in stable equilibrium. Therefore, if the droplet starts out
in a position away from the center, the tangential force will
always restore the droplet back to the s plane. This
restoring force in our ray-optics model is analogous to
the alignment torque in the Rayleigh regime, in which
particle sizes are much smaller than the wavelength of the
incident light [19]. In the Rayleigh regime, Haefner et al.
[19] analytically show that linearly polarized light can

impart mechanical torque on a pair of particles and align
their separation vector r perpendicular to the polarization
vector E. This curious alignment is also evident in our
juggling droplets.
The inquisitive reader may well ask, “Can we juggle

small particles?” We shall demonstrate this possibility
using Moore et al.’s pioneering experiment [8]. Our theory
not only explains their observation, but also makes
predictions on their particle charge and oscillation fre-
quency. To match their experimental conditions, consider
silica particles of diameter D ¼ 7 μm, density ρ ¼ 2.65 ×
103 kgm−3 and index of refraction n2 ¼ 1.45 illuminated
by a laser beam of power P ¼ 0.5 W, wavelength
λ ¼ 1.5 μm, and numerical aperture NA ¼ 0.1 [17]. To
estimate the electrostatic charge missing from their
work, we assumed a constant surface charge density of
1.5 × 10−6 Cm−2 [20], so that the net charge of a 7 μm
particle is Q ¼ 2.3 × 10−16 C. Under these conditions, the
particles dance in complex patterns (see Movie 7 in
Supplemental Material [10] for a simulation of the oscil-
lations in Moore et al.’s experiment) resembling the
limaçon trisectrix of Dürer and Pascal [21]. As in juggling,
the plane of motion lies perpendicular to the polarization
vector. The motion in Moore et al.’s experiment belongs to
a regime where electrostatic forces contribute significantly
to the dynamics and where ray optics is nearing its limits
(D ≈ 5λ). In this regime, the particles play an anti-tug-of-
war in which they attempt to push their way towards the
center of the beam, but the strong electrostatic repulsion
prevents them from getting there. We analyzed the particle
position spectra and obtained an oscillation frequency of
2.6 Hz, in close agreement with the 3 Hz frequency
reported in Ref. [8].
Although the complete description of classical optics

relies on solving the complex partial differential equations
of electrodynamics, we have found in this work that the
much simpler ray optics is sufficient at explaining most
of the salient features. It is interesting to speculate the
implications of our findings. Might optical juggling be used
for studying two-body interactions in juggling fountain
[22], charge interactions in colloidal systems [23] and
hydrodynamic interactions in two-dimensional systems
[24]? Our work demonstrates how well-studied physical
systems can contain rich and undiscovered phenomena.
A simple beam of light still holds an enduring fascination
for us, so let there be light.
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FIG. 5. (a) Two representative equal-power, linearly polarized
rays enter the sphere with different orientation of the polarization
vector E. (b) Transmittances (solid lines) and reflectances (dashed
lines) for p-polarized (purple lines) and s-polarized light (green
lines) at an air-glycerol interface as a function of angle of
incidence θi. (c) Ray tracing calculation of the tangential forces
(FT ), in units of the gravitational force mg, for a 28 μm glycerol
droplet as a function of the droplet position r. The incident beam
wave vector k points out of the page. All forces point in the
counterclockwise direction. They are strongest at a 45° polar
angle (dashed line).

PHYSICAL REVIEW LETTERS 122, 043902 (2019)

043902-4



*Present address: Department of Biomedical Engineering,
University of Rochester, Rochester New York 14627, USA.

†Corresponding author.
kelken.chang@physics.gu.se

[1] A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[2] A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283

(1971).
[3] A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 24, 586

(1974).
[4] A. Ashkin, Science 187, 1073 (1975).
[5] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu,

Opt. Lett. 11, 288 (1986).
[6] A. Ashkin, Biophys. J. 61, 569 (1992).
[7] V. Carmona-Sosa and P. A. Quinto-Su, J. Opt. 18, 105301

(2016).
[8] J. Moore, L. L. Martin, S. Maayani, K. H. Kim, H.

Chandrahalim, M. Eichenfield, I. R. Martin, and T. Carmon,
Opt. Express 24, 2850 (2016).

[9] T. Mitra, A. K. Brown, D. M. Bernot, S. Defrances, and J. J.
Talghader, Opt. Express 26, 6639 (2018).

[10] See Supplemental Material, at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.043902 for movies
of the droplets juggling in the laser beam, and for additional
details of the experimental procedures and numerical
simulation, which includes Refs. [11–13].

[11] T. J. Atherton and D. J. Kerbyson, Image Vision Comput.
17, 795 (1999).

[12] N. Mordant, A. M. Crawford, and E. Bodenschatz, Physica
(Amsterdam) 193D, 245 (2004).

[13] L. F. Shampine and M.W. Reichelt, SIAM J. Sci. Comput.
18, 1 (1997).

[14] B. Polster, The Mathematics of Juggling (Springer-Verlag,
New York, 2003).

[15] A. G. Bailey, Electrostatic Spraying of Liquids (Wiley,
New York, 1988).

[16] We allude to the elegant quote by JohnA.Wheeler “Spacetime
tellsmatter how tomove;matter tells spacetime how to curve.”

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.043902 for addi-
tional details, which includes Refs. [11–13].

[18] W. Briels, Theory of Polymer Dynamics (Uppsala Univer-
sity, Uppsala, 1994).

[19] D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett.
103, 173602 (2009).

[20] S. Nieh and T. Nguyen, J. Electrost. 21, 99 (1988).
[21] See http://mathworld.wolfram.com/Limacon.html.
[22] R. Legere and K. Gibble, Phys. Rev. Lett. 81, 5780 (1998).
[23] M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C.

Bechinger, Phys. Rev. Lett. 92, 078301 (2004).
[24] R. Di Leonardo, S. Keen, F. Ianni, J. Leach, M. J. Padgett,

and G. Ruocco, Phys. Rev. E 78, 031406 (2008).

PHYSICAL REVIEW LETTERS 122, 043902 (2019)

043902-5

https://doi.org/10.1103/PhysRevLett.24.156
https://doi.org/10.1063/1.1653919
https://doi.org/10.1063/1.1653919
https://doi.org/10.1063/1.1655064
https://doi.org/10.1063/1.1655064
https://doi.org/10.1126/science.187.4181.1073
https://doi.org/10.1364/OL.11.000288
https://doi.org/10.1016/S0006-3495(92)81860-X
https://doi.org/10.1088/2040-8978/18/10/105301
https://doi.org/10.1088/2040-8978/18/10/105301
https://doi.org/10.1364/OE.24.002850
https://doi.org/10.1364/OE.26.006639
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
https://doi.org/10.1016/S0262-8856(98)00160-7
https://doi.org/10.1016/S0262-8856(98)00160-7
https://doi.org/10.1016/j.physd.2004.01.041
https://doi.org/10.1016/j.physd.2004.01.041
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.043902
https://doi.org/10.1103/PhysRevLett.103.173602
https://doi.org/10.1103/PhysRevLett.103.173602
https://doi.org/10.1016/0304-3886(88)90021-6
http://mathworld.wolfram.com/Limacon.html
http://mathworld.wolfram.com/Limacon.html
http://mathworld.wolfram.com/Limacon.html
http://mathworld.wolfram.com/Limacon.html
https://doi.org/10.1103/PhysRevLett.81.5780
https://doi.org/10.1103/PhysRevLett.92.078301
https://doi.org/10.1103/PhysRevE.78.031406

