
 

Multidimensional Atom Optics and Interferometry

B. Barrett,1,2,* P. Cheiney,1,2 B. Battelier,2 F. Napolitano,1 and P. Bouyer2
1iXblue, 34 rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France

2LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux–IOGS–CNRS:UMR 5298,
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We propose new multidimensional atom optics that can create coherent superpositions of atomic wave
packets along three spatial directions. These tools can be used to generate light-pulse atom interferometers
that are simultaneously sensitive to the three components of acceleration and rotation, and we discuss how
to isolate these inertial components in a single experimental shot. We also present a new type of atomic
gyroscope that is insensitive to parasitic accelerations and initial velocities. The ability to measure the full
acceleration and rotation vectors with a compact, high-precision, low-bias inertial sensor could strongly
impact the fields of inertial navigation, gravity gradiometry, and gyroscopy.
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Inertial sensors based on cold atoms and light-pulse
interferometry [1–3] exhibit exquisite sensitivity that could
potentially revolutionize a variety of fields including geo-
physics and geodesy [4,5], gravitational wave detection [6],
tests of fundamental laws, and inertial navigation [7,8].
Their state-of-the-art sensitivity and ultralow measurement
bias are particularly appropriate for long-term integration as
in precisionmeasurements [9,10] or space experiments [11].
They also offer great potential for autonomous inertial
navigation systems [12–15], where the attitude and position
of a moving body is determined by integrating the equations
of motion.
The measurement principle of light-pulse atom interfer-

ometers (AIs) is linked to a retroreflected laser beam that is
referenced to an atomic transition. This defines a phase ruler
to which the free-falling atom’s trajectory is compared [16],
in analogy to classical falling-corner-cube gravimeters [17].
In general, the direction of the retroreflected beam defines
the inertially sensitive axis of these quantum sensors. They
can be sensitive to accelerations [18–22] and acceleration
gradients [23–25] parallel to the effective optical wave
vector k, and to rotations perpendicular to the plane defined
by k × v0 [26–32], where v0 is the initial velocity of the
atomic source. So far, the challenge of realizing multiaxis
inertial measurements has been addressed only in a sequen-
tial manner [33,34], where the direction of k was changed
between measurement cycles. In this work, we propose new
multidimensional AI geometries that are simultaneously
sensitive to accelerations and rotations in three dimensions,
and can discern their vector componentswithin a single shot.
In what follows, we define a multidimensional AI as

one where the light interaction exchanges momentum
with the atomic sample along more than one spatial
direction at a time. This momentum exchange is accom-
panied by an independent phase shift along each axis,

which is imprinted on the corresponding diffracted
wave packet [35]. This mechanism creates a unique type
of atom-optical element that satisfies all the requirements
of a multidimensional AI—enabling one to split, reflect,
and recombine matter waves along two or more axes
simultaneously.
We have developed a semiclassical model for 3D atom

optics involving Raman transitions [36]. Figure 1 shows
examples of 2D and 3D atom-optical beam splitters, where

(a)

(c)

(b)

FIG. 1. (a), (b) Multidimensional atom-optical beam splitters
realized with mutually orthogonal pairs of independent, counter-
propagating Raman beams. (c) Energy-momentum diagram
showing velocity-sensitive Raman transitions associated with
each pair of beams shown in (a), (b). To avoid excitation of
parasitic resonances, different detunings Δμ are used for each
beam pair. This leads to a small difference in the wave vectors kμ,
which has been exaggerated for clarity.
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mutually orthogonal pairs of counterpropagating Raman
beams couple an atom with initial momentum p0 to two or
three diffracted states moving perpendicular to one another.
Along each axis μ ¼ x, y, z, two beams with wave vectors
κ1μ and κ2μ, and corresponding frequencies ω1μ and ω2μ,
excite two-photon Raman transitions [37] between two
ground states j1i and j2i separated by frequency ωA

21.
During this process, a momentum ℏkμ ¼ ℏðκ1μ − κ2μÞ is
transferred to the atom, where ℏ is the reduced Planck’s
constant and kμ ≃ 2κ1μ is the effective Raman wave vector
along axis μ [38,39]. The laser frequencies ωnμ are detuned
byΔμ from an intermediate excited state j3; p0i as shown in
Fig. 1(c), such that jΔμj is large compared to the natural
linewidth of the atomic transition and, for μ ≠ ν, jΔμ − Δνj
is much larger than the effective Rabi frequency. This
second condition strongly inhibits scattering processes
involving absorption along one axis and reemission
along another. In the region of beam overlap, an atom
initially in j1; p0i undergoes 3D diffraction—splitting the
wave packet into a superposition of this undiffracted state
and three orthogonal diffracted states: j2; p0 þ ℏkμi. The
dynamics of this coherent 3D diffraction process are
described byRabi oscillations in an effective 4-level system:
jΨi ¼ C0j1; 0; 0; 0i þ Cxj2; ℏkx; 0; 0i þ Cyj2; 0; ℏky; 0i þ
Czj2; 0; 0; ℏkzi, where the states are labeled by their internal
energy and the photon momentum transfer along each
direction. This system exhibits Rabi oscillations in the
population between states, where the vector of state ampli-
tudes CT ¼ ðC0; Cx; Cy; CzÞ evolves according to

CðtÞ ¼ exp

2
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Here, χμ is the Rabi frequency and δμ ≃ ðω1μ − ω2μÞ −
ωA
21 − δDμ − δRμ is the two-photon detuning of each beam

pair, where δDμ ¼ kμ · v0 is the Doppler shift for initial
velocity v0 ¼ p0=m, δRμ ¼ ℏk2μ=2m is a photon recoil
shift, and m is the atomic mass. For the special case
when δx ¼ δy ¼ δz ≡ δ, the effective Rabi frequency for
this system can be written analytically as ΩRabi ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 4ðjχxj2 þ jχyj2 þ jχzj2Þ

q
.

We now discuss the specific case of 2D atom optics.
Figure 2(a) displays Rabi oscillations corresponding to a 2D
beam splitter, where population is transferred between
atoms initially in j1; 0; 0; 0i and the two diffracted states
j2;ℏkx; 0; 0i and j2; 0;ℏky; 0i. A beam splitter is achieved
at an interaction time τ corresponding to a pulse area
ΩRabiτ ¼ π=2, where 50% of the population is accumulated
in the two target states. Contrary to a 1D beam splitter,
where one usually desires a 50=50 superposition of the

initial and final states, here the population in the initial state
is fully depleted—closely resembling 1D double-diffraction
beam splitters [40–44]. Similarly, Fig. 2(b) shows the Rabi
oscillation corresponding to a 2D mirror, where a π pulse of
duration 2τ achieves 100% population transfer from
j2; 0;ℏky; 0i to j2;ℏkx; 0; 0i. The resonance frequency
for this transition is identical to the population-reversed
case (j2;ℏkx; 0; 0i → j2; 0;ℏky; 0i), which is ideal for
reflecting the two arms of an interferometer. We emphasize
that this population transfer is possible only through the
coupling with the undiffracted state j1; 0; 0; 0i. These 2D
atom optics are similar to those proposed in Ref. [45].
A key aspect of any matter-wave optical element is the

transfer of a “classical” phase to the atoms [1,16,46]. In the
case of light-pulse atom optics, this is the optical phase
difference between excitation beams at the position of the
atoms [2]. To illustrate how these optical phases play a role
for 2D atom optics, we consider the specific case of resonant
fields (δx ¼ δy ¼ 0) and Rabi frequencies of identical
magnitude (χμ¼jχjeiϕμ). Here, ϕμ ¼ kμ · rþ φμ is the total
phase difference between Raman beams along the μ axis,
with the atomic position denoted by r and the laser phase
difference by φμ ¼ φ1μ − φ2μ. In a truncated basis with
CT ¼ ðC0; Cx; CyÞ, the 2D beam splitter and mirror pulses
can then be summarized by the following matrices:
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FIG. 2. Rabi oscillations for a 2D beam splitter (a) and mirror
(b) realized using pulse areas of ΩRabit ¼ π=2 and π, respectively.
The insets show the corresponding physical picture.
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Here, the role of the optical phases becomes immediately
clear. For atoms undergoing a two-photon transition from
j1; 0; 0; 0i to the diffracted state along axis μ, the phase ϕμ

is imprinted on the wave packet. This is a result of
absorbing a photon from the field propagating along κ1μ,
followed by stimulated emission into the field along κ2μ.
Similarly, the phase −ϕμ is imprinted when making the
transition from the same diffracted state back to j1; 0; 0; 0i.
Finally, atoms transferred between diffracted states acquire
the phase�ðϕx − ϕyÞ. This arises because there is no direct
coupling between j2;ℏkx; 0; 0i and j2; 0;ℏky; 0i—atoms
must make a four-photon transition through the intermedi-
ate state j1; 0; 0; 0i in a similar manner to double diffrac-
tion [40,42].
A 2D Mach-Zehnder interferometer can be formed by

combining a sequence of three 2D atom-optical pulses of
duration τ − 2τ − τ, each separated by an interrogation time
T. Figure 3(a) shows the atomic trajectories associated with
this new AI geometry, where atoms are split, reflected, and
recombined along two spatial directions. A simple matrix
representation of this process is obtained from the follow-
ing product

MMZ ¼ M2DðτÞUfreeðTÞM2Dð2τÞUfreeðTÞM2DðτÞ; ð3Þ

where UfreeðTÞ is a unitary matrix describing the free
evolution between laser interactions [47]. For an atom
initially in j1; 0; 0; 0i, and allowing for different optical

phases ϕμ;i during the ith pulse, one can show that the two
internal state populations—corresponding to the two com-
plimentary output ports of the AI—are given by

jh1jMMZj1; 0; 0; 0ij2 ¼
1

2
ð1þ cosΔΦÞ ¼ jC0j2;

jh2jMMZj1; 0; 0; 0ij2 ¼
1

2
ð1 − cosΔΦÞ ¼ jCxj2 þ jCyj2;

where ΔΦ ¼ Δϕ1 − 2Δϕ2 þ Δϕ3 is the total AI phase
shift, with Δϕi ≡ ϕx;i − ϕy;i. We point out that the pop-
ulations of the two diffracted states, jCxj2 and jCyj2, are
identical and hence carry the same information.
The state-labeled architecture of this AI enables

one to read out the two AI ports by spatial integration
using resonant fluorescence or absorption imaging [48].
Although the output ports are spatially separated, the 2DAI
shown in Fig. 3(a) does not require a spatially resolved
detection system [49–51]. An interference fringe can be
obtained from either port by scanning the optical phases—
allowing one to probe for inertial effects.
The atomic trajectories shown in Fig. 3(a) give this 2D

AI a unique sensitivity to inertial effects. Intuitively, since
the two pathways enclose a rectangular spatial area in the
xy plane, the inertial phase is sensitive to the rotation
component perpendicular to this plane, Ωz. This sensitivity
is proportional to the area enclosed by the two pathways
and does not require an initial velocity. In addition,
when projected onto the xt and yt planes, these pathways
enclose the same space-time area as a 1D Mach-Zehnder
geometry—yielding sensitivity to the two acceleration
components ax and ay.
The full inertial dynamics resulting from the interference

between any two atomic trajectories are encoded in the
phase shift ΔΦ. We compute this phase shift for the 2D
Mach-Zehnder geometry using the ABCDξ formalism
developed by Bordé and Antoine [16,35,52,53]. Briefly,
for an N-pulse interferometer, ΔΦ can be written as

ΔΦ ¼
XN
i¼1

ΔKi · Qi þ Δφi; ð4Þ

where ΔKi ≡ kA;i − kB;i is the difference between the
effective wave vectors kA;i and kB;i associated with the
momentum transfer from the ith light pulse along paths “A”
and “B,” respectively. Similarly, Qi ≡ 1

2
½qAðtiÞ þ qBðtiÞ� is

the position on the midpoint trajectory, andΔφi¼φA;i−φB;i

is a control parameter arising from the relative laser phases.
The atomic position and momentum trajectories, qðtÞ and
pðtÞ respectfully, are computed from the solution to the
classical equations of motion [52]. Because of the sym-
metry of the Mach-Zehnder geometry (i.e., kA;2þkB;2¼0),
the phase shift is entirely determined by the choice of initial
wave vectors kA;1 and kB;1 [54]. In what follows, we label

(a)

(b) (c)

FIG. 3. (a) A sequence of 2D atom-optical pulses constituting a
2D Mach-Zehnder interferometer. (b) A retroreflected beam
geometry enabling 2D double-diffraction atom optics, which
symmetrically transfer �ℏkμ of momentum along each axis
μ ¼ x, y. (c) Four simultaneous 2D Mach-Zehnder AIs derived
from the same atomic source. Linear combinations of the four
phase shifts allow one to isolate the three inertial components ax,
ay, and Ωz with increased sensitivity.
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the AI phase shift with the subscript “A,B” which specifies
both its geometry and initial wave vectors. To leading order
in T, the generalized Mach-Zehnder phase shift is [36]

ΔΦA;B ¼ ΔK1 ·

�
aþ 2

�
v1 þ

ℏ
m
K1

�
×Ω

�
T2: ð5Þ

Here, a ¼ ðax; ay; azÞ is the acceleration vector due to
external motion and gravity, Ω ¼ ðΩx;Ωy;ΩzÞ is the
rotation vector, v1 is the atomic velocity at the time of
the first light pulse, K1 ≡ 1

2
ðkA;1 þ kB;1Þ corresponds to the

momentum transferred to the atom’s center of mass by the
first pulse, and we have omitted the control phases Δφi for
clarity. The first two terms in Eq. (5) correspond to the well-
known first-order phase shift ΔK1 · ðaþ 2v1 ×ΩÞT2,
which exhibits sensitivity to the components of a and
the Coriolis acceleration 2v1 ×Ω that are parallel to ΔK1.
The third term is a purely rotational phase which can be
written as 2ðℏ=mÞðΔK1 × K1Þ ·ΩT2. We emphasize that
this phase is not present in 1D light-pulse AIs where
ΔK1 × K1 ¼ 0. This key point leads to additional rotation
and gravity gradient sensitivity [36] with multidimensional
geometries that has not yet been exploited experimentally.
In contrast to previous atomic gyroscopes [26–32], here an
initial launch velocity is not required to achieve rotation
sensitivity—instead this velocity is provided by the first 2D
beam splitter. This is advantageous for two reasons: (i) the
magnitude of this velocity kick can be as precise as
the value of k (typically better than one part in 109), and
(ii) the direction of the kick can be changed by simply
reversing the sign of kA;1 and kB;1. With a single atomic
source, these features can then be exploited to suppress
contributions from pure accelerations and initial velocities—
which are themain sources of error in atomic gyroscopes [28].
For the 2D Mach-Zehnder geometry shown in Fig. 3(a),

with initial wave vectors in the xy plane (kA;1 ¼ kxx̂,
kB;1 ¼ kyŷ, ΔK1 × K1 ¼ kxkyẑ), Eq. (5) gives

ΔΦx;y ¼ kxatotx T2 − kyatoty T2 þ 2ℏ
m

kxkyΩzT2; ð6Þ

where atot ≡ aþ 2v1 ×Ω. Although this phase contains a
mixture of different inertial effects, one can isolate each of
them by using linear combinations of phases obtained from
area-reversed geometries, as shown in Table I. Each phase
ΔΦA;B can be obtained from a single measurement by
employing double-diffraction [40–44] or double-single-
diffraction [55] atom optics in two dimensions [36].
Figures 3(b) and 3(c) display a scheme in which four
simultaneous interferometers are generated from the same
atomic source via 2D double diffraction pulses—enabling
one to isolate ax, ay, and Ωz in a single shot. Here, the
phase readout requires spatial resolution of the adjacent
interferometer ports; therefore the cloud diameter at the

final beam splitter must be less than the separation between
adjacent clouds. This implies a sub-recoil-cooled source
with an initial cloud size σ0 ≪ 2ℏkμT=m (e.g., σ0 ≪ 1 mm
for T ¼ 10 ms). This scheme is well suited to inertial
navigation applications, where strong variations of rota-
tions and accelerations between measurement cycles would
compromise the common-mode rejection of a sequential
measurement protocol. Additionally, with strongly corre-
lated measurements, one can reject both the phase noise
between orthogonal Raman beams and common systematic
effects.
These principles can be extended to a 3D geometry,

where three mutually perpendicular pairs of Raman beams
intersect to generate three separate 2D interferometers in
orthogonal planes, as shown in Fig. 4. At t ¼ 0, a 3D beam
splitter diffracts an atom initially in the undiffracted state
j1; 0; 0; 0i into three equal proportions traveling along x̂, ŷ,
and ẑ. These three diffracted states continue along their
respective axes (μ̂) until t ¼ T, when a 3D atom-optical
mirror freezes the motion along μ̂ and diffracts each wave
packet equally along the two directions orthogonal to μ̂
[56]. Finally, at t ¼ 2T the atoms intersect at three
opposite corners of a cube, as shown in Fig. 4(c), where
a recombination pulse transfers population from the
diffracted states in each plane to an undiffracted one.
Detection of the resulting 9 spatially separated clouds
yields sensitivity to the full acceleration and rotation
vectors in a single shot. Individual inertial components
can then be isolated in the same manner previously

TABLE I. Linear combinations of 2D Mach-Zehnder phases
obtained from the four symmetric geometries shown in Fig. 3(c).
Here, the laser phase contribution Δφ1 − 2Δφ2 þ Δφ3 cancels in
the sum phase since it is common to all geometries.

ΔΦx;y ΔΦ−x;y ΔΦ−x;−y ΔΦx;−y Sum phase

þ − − þ 4kxatotx T2

− − þ þ 4kyatoty T2

þ − þ − 8ðℏ=mÞkxkyΩzT2

FIG. 4. A sequence of 3D atom optical pulses generating three
2DMach-Zehnder interferometers in mutually orthogonal planes.
Parasitic trajectories excited by the beams are not shown. Three
sets of spatially separated atomic clouds arrive at opposite corners
of a cube where they can be read out simultaneously—yielding
sensitivity to the full acceleration and rotation vectors.
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described for a 2D geometry—that is, by exciting sym-
metrically with double-diffraction pulses and imaging the
clouds separately in each plane.
This 3D geometry allows one to easily construct

a three-axis gyroscope. For instance, the combination of
phases: Θ≡ ΔΦx;y þ ΔΦy;z þ ΔΦz;x, obtained from three
corners of the cube, and ϒ≡ ΔΦ−x;y þ ΔΦy;z þ ΔΦz;−x,
acquired by reversing the Raman wave vector on the x axis,
yields

Θ ¼ 2ℏ
m

ðkykzΩx þ kxkzΩy þ kxkyΩzÞT2; ð7aÞ

ϒ ¼ 2ℏ
m

ðkykzΩx − kxkzΩy − kxkyΩzÞT2: ð7bÞ

These phase combinations allow one to access Ωx through
the sum Θþϒ ¼ 4 ℏ

m kykzΩxT2. Hence, Eq. (7) can be
used as a building block to isolate each rotation component.
A key point here is that both Θ and ϒ arise from a single
measurement of three simultaneous 2D interferometers in
orthogonal planes. Yet they are each immune to spurious
velocities, accelerations, and laser phase noise, and hence
can be combined to isolate a given rotation component.
Since all quantities appearing in these rotation phases are
precisely known, future gyroscopes based on this archi-
tecture could benefit from the same relative accuracy as
cold-atom-based accelerometers [5].
We have presented a novel approach for manipulating

atomic wave packets in multiple spatial dimensions. These
new atom-optical tools can be utilized to generate simple
2D interferometers sensitive to inertial effects in three
dimensions. More complex planar geometries involving 2D
double diffraction pulses enable one to isolate two com-
ponents of acceleration and one rotation in a single shot,
while also rejecting laser phase noise and common sys-
tematic effects. Finally, we discussed an extension to a 3D
geometry, where the full acceleration and rotation vectors
can be retrieved. These concepts can easily be extended to
other AI configurations involving four or more pulses
[57,58], which could be advantageous for applications
such as multi-axis gravity gradiometry, gyroscopy, or
gravitational wave detection. The sensitivity of these AIs
could also benefit from multiphoton momentum transfer
pulses [59–64], which would aid the realization of a 3D
inertial sensor in a compact volume. We anticipate that this
work will influence future generations of quantum accel-
erometers and gyroscopes, and will offer new perspectives
for inertial navigation systems.
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[1] Ch. J. Bordé, Atom interferometry with internal state label-
ling, Phys. Lett. A 140, 10 (1989).

[2] M. A. Kasevich and S. Chu, Atomic Interferometry Using
Stimulated Raman Transitions, Phys. Rev. Lett. 67, 181
(1991).

[3] A. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics
and interferometry with atoms and molecules, Rev. Mod.
Phys. 81, 1051 (2009).

[4] O. Carraz, C. Siemes, L. Massotti, R. Haagmans, and P.
Silvestrin, A spaceborne gravity gradiometer concept based
on cold atom interferometers for measuring earth’s gravity
field, Microgravity Sci. Technol. 26, 139 (2014).

[5] V. Ménoret, P. Vermeulen, N. Le Moigne, S. Bonvalot, P.
Bouyer, A. Landragin, and B. Desruelle, Gravity measure-
ments below 10−9 g with a transportable absolute quantum
gravimeter, Sci. Rep. 8, 12300 (2018).

[6] B. Canuel et al., Exploring gravity with the MIGA
large scale atom interferometer, Sci. Rep. 8, 14064 (2018).

[7] J. M. Hogan, D. M. S. Johnson, and M. A. Kasevich, in
Proceedings of the International School of Physics “Enrico
Fermi”, edited by E. Arimondo, W. Ertmer, W. P. Schleich,
and E. M. Rasel (IOS, Amsterdam; SIF, Bologna, 2009),
Vol. 168, pp. 411–447.

[8] B. Barrett, P.-A. Gominet, E. Cantin, L. Antoni-Micollier,
A. Bertoldi, B. Battelier, P. Bouyer, J. Lautier, and A.
Landragin, in Proceedings of the International School of
Physics “Enrico Fermi”, edited by G. M. Tino and M. A.
Kasevich (IOS, Amsterdam; SIF, Bologna, 2014), Vol. 188,
pp. 493–555.
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