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We calculate the fluorescence spectra of a driven lattice of coupled cavities. To do this, we extend
methods of evaluating two-time correlations in infinite lattices to open quantum systems; this allows access
to momentum-resolved fluorescence spectrum. We illustrate this for a driven-dissipative transverse-field
anisotropic XY model. By studying the fluctuation-dissipation theorem, we find the emergence of a
quasithermalized steady state with a temperature dependent on system parameters; for blue-detuned
driving, we show this effective temperature is negative. In the low excitation density limit, we compare
these numerical results to analytical spin-wave theory, providing an understanding of the form of the
distribution function and the origin of quasithermalization.
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By driving a system out of equilibrium, it is possible to
stabilize states of matter that are either not known or are
hard to achieve in thermal equilibrium. Classically, driven
systems have been extensively studied in the framework of
pattern formation and dynamics [1]. The study of quantum
systems driven far from equilibrium is currently very
active, in fields ranging from ultracold atoms [2–5] to
optically induced superconductivity [6], and hybrid matter-
light systems [7]. One such class of system is driven-
dissipative lattices [8–10]. This is motivated by a variety
of experimental platforms, including photonic crystal
devices with quantum dots [11], micropillar structures in
semiconductor microcavities [12], trapped ions [13], and
microwave cavities and superconducting qubits [14,15].
Depending on the combination of couplings and driving
used, many different models can be realized, and for many
of these models, driving and dissipation allow one to induce
a wider variety of collective states than occur in thermal
equilibrium [16–25].
Most theoretical work on driven-dissipative lattices has

focused on using order parameters or equal-time correlation
functions to identify the phase diagram. For coherent
driving, such observables correspond to measuring the
elastically scattered light. Less attention has been paid to
the properties of the incoherent fluorescence from such
lattices. From the quantum optics perspective, incoherent
fluorescence of a coherently driven system can reveal
interactions and coherence times, as known for the
Mollow triplet fluorescence [26], which has been seen in
candidate systems for coupled cavity arrays such as
quantum dots [27] and superconducting qubits coupled
to microwave cavities [28]. In extended systems, one can
also access momentum-resolved spectra, e.g., by measuring
the interference of light emitted from different cavities.
Moreover, second-order correlations distinguish bunching
or antibunching of photons—as studied theoretically for a

pair of coupled cavities [29,30]. Applied to extended
systems, such measurements can make contact with quan-
tities typically seen with condensed matter probes such as
angle resolved photon emission, spectroscopic scanning
tunneling microscopy, or neutron scattering; i.e., they
measure the excitation and fluctuation spectrum of a
correlated state, revealing the nature of correlated states.
There are other reasons to anticipate that calculations of

two-point and two-time correlations can provide under-
standing beyond single-time observables. First, for any
correct treatment of a finite size system, symmetry breaking
should not occur. This can also be true for certain numerical
approaches in infinite systems: unless one uses the non-
commuting limits of symmetry-breaking fields and system
size, one finds a steady state density matrix with equal
mixtures of symmetry-broken states [31,32]. Two-time
correlations allow one to instead ask how long symmetry
breaking persists in response to a probe—i.e., long time
correlations correspond to divergences of the zero fre-
quency response of a system. For driven systems, similar
results may be extended to the treatment of limit cycles and
“nonequilibrium time crystals” [24,33,34]. The density
matrix, as an ensemble averaged quantity, involves aver-
aging over the phase (or equivalently origin in time) of any
limit cycle, washing out any time dependence in the density
matrix. In contrast two-time correlations reveal such cycles
as a diverging response at nonzero frequency.
Another motivation for studying two-time correlations is

to investigate thermalization. Thermalization in driven
systems has been studied in a number of contexts, including
the “low-energy effective temperature” in the Keldysh
field theory of driven atom-photon systems [35–41] and
the mode populations in photon [42,43] and polariton
condensates [44–46]. This steady state behavior in a
continuously driven system can also be connected to the
emergence of a prethermalized state following a sudden
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quench in an isolated system [47–49]—in such a pre-
thermalized state, there is a flow of energy between
degrees of freedom at different scales. For a thermalized
state, we expect the density matrix takes the Gibbs form
ρ ¼ exp ð−Heff=TeffÞ with some effective Hamiltonian
Heff . One may note, however, that any density matrix can
be written in the Gibbs form; to make the criterion
meaningful one thus needs a method to independently
determineHeff . This means simultaneously measuring the
occupations and densities of available states—this is the
essence of the fluctuation-dissipation theorem, which we
discuss below.
In this Letter, we find the two-time correlations of a

driven-dissipative lattice, and see the emergence of a
quasithermalized state. We calculate both on-site and
intersite correlations, giving access to the momentum-
resolved fluorescence spectrum of a driven coupled cavity
array. In order to eliminate boundary and finite-size effects,
we work always with the translationally invariant infinite
lattice. On-site calculations in a finite-size lattice have also
been recently studied for the XXZ model [50]. While the
methods we present are general, our work will focus on the
transverse-field anisotropic XY model (which has both
the Ising and XY models as special cases), a driven-
dissipative realization of which was proposed by Bardyn
and İmamoğlu [51], and the steady state properties studied
[20,52] using matrix product state approaches. As shown in
[51] and reviewed in the Supplemental Material [53], this
model can be realized by an array of coupled cavities in
the photon blockade regime, with a two-photon pump that
creates pairs of photons in adjacent sites (see Fig. 1).
Following [20,53], working in the rotating frame of

the pump, the effective Hamiltonian has the form H¼
−J

P
j½gσzjþ½ð1þΔÞ=2�σxjσxjþ1þ½ð1−ΔÞ=2�σyjσyjþ1�: The

dimensionless transverse-field g depends on the pump-
cavity detuning, and the anisotropy parameter Δ, given
by the ratio of pump strength and photon hopping J. For
Δ ¼ 1 we recover the Ising model and for Δ ¼ 0 the
isotropic XY model. In the following, we will work in units
of J. For the driven system, the Hamiltonian is accom-
panied by photon loss at rate κ into empty radiation modes.
We thus have the master equation

∂tρ ¼ Lfρg
¼ −i½H; ρ� þ κ

2

X

j

ð2σ−j ρσþj − σþj σ
−
j ρ − ρσþj σ

−
j Þ: ð1Þ

While a nondriven system would equilibrate with the bath,
the time-dependent driving breaks detailed balance and
leads instead to a nonequilibrium steady state (NESS).
The fluctuation and response spectra discussed above

require evaluating two-time correlation functions which,
for a Markovian system, can be found using the quantum
regression theorem [26]:

hOðjÞ
2 ðtÞOðiÞ

1 ð0Þi ¼ Tr½OðjÞ
2 etLOðiÞ

1 ρss�; ð2Þ

where i, j label two lattice sites and 1,2 two local operators.
In order to compute this for an infinite lattice, we employ
matrix product state (MPS) methods. We first find the
steady state ρss of the master equation (1). We do this by
using the infinite time evolving block decimation (ITEBD)
algorithm [59,60] to find the translationally invariant
infinite MPS such that Lfρssg ¼ 0. Starting from the
NESS, we then calculate two-time correlations using
Eq. (2). Because applying local operators Ô1 to ρss breaks
translational invariance, we can no longer propagate using
ITEBD. For a finite size lattice, TEBD could be used, but
this restricts the extent of correlations in both space and
time, as excitations are reflected from the boundaries [61].
Fortunately, a method to find such correlations in an infinite
lattice has been developed by Bañuls et al. [62] for unitary
evolution. This approach [62], which we extend to open
systems, writes the time evolution between applying Ô1

and Ô2 as a tensor network, and contracting this network
gives the desired correlator (see [53] for details).
Using this approach, we calculate the fluctuation spec-

trum SO;O†ðωÞ and the response function of the system
χ00O;O†ðωÞ which are at the heart of the fluctuation-
dissipation theorem [26,41], SO;O†ðωÞ ¼ FðωÞχ00O;O†ðωÞ;
with the distribution function FðωÞ discussed below.
Both SO;O†ðωÞ and χ00O;O†ðωÞ are the Fourier transforms
of two-time correlations

S̃O;O†ðtÞ ¼ 1

2
hfÔðtÞ; Ô†ð0Þgi; ð3Þ

χ̃O;O†ðtÞ ¼ iθðtÞh½ÔðtÞ; Ô†ð0Þ�i; ð4Þ

which we may evaluate using Eq. (2).
Figure 2 shows the on-site (i ¼ j) fluctuation and

response functions in frequency domain for Ô1 ¼ Ô2 ¼
Ô ∈ fσx; σzg and a range of values of transverse-field g.
We show both the Ising limit (Δ ¼ 1, left two columns), as
well as at smallΔ (right column), where analytic results can
be found using spin-wave theory as discussed further

FIG. 1. Coupled cavity array with hopping J, photon loss κ,
and two-photon pumping (blue line). When strong nonlinearity
(purple shading) in each cavity leads to photon blockade, this
yields the transverse-field anisotropic XY model [51].
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below. Panels (a)–(c) show SðωÞ which measures the
occupations, while panels (d)–(f) show response function
χ00ðωÞ, which measures the density of states. We note that
while at g ¼ 0, 1 we see SðωÞ for σx is peaked at ω ¼ 0, its
value always remains finite as there is no phase transition
in this open one-dimensional system [20,25]. As we will
discuss later, the form of the density of states seen here can
be understood from the momentum-resolved correlation
functions.
The bottom row of Fig. 2 shows the inverse distribution

functions FðωÞ−1 ¼ χ00O;O†ðωÞ=SO;O†ðωÞ for Ô ¼ σx; σz,
respectively. In an equilibrium system, the distribution
function FðωÞ depends only on whether Ô obeys fermionic
or bosonic (anti-)commutation relations; for bosons
it is: FðωÞ≡ 2nBðωÞ þ 1 ¼ coth½ðω − μÞ=2T�: In a driven-
dissipative system, FðωÞ may take a more general form.
However, as identified in other contexts [7,35–41], quasi-
thermalization of low-energy modes often occurs, leading
to the identification of a low-energy effective temperature
FðωÞ ∼ 2Teff=ω. Note that since all calculations are per-
formed in the rotating frame, all frequencies are measured
relative to the pump frequency—i.e., the pump frequency
acts as an effective chemical potential μ that sets the
frequency at which FðωÞ diverges.
As seen in Figs. 2(g) and 2(h), FðωÞ−1 is linear ω → 0

indicating the emergence of a low-energy effective temper-
ature in this model. Because the power spectrum of
physical operators is positive, there is a minimum possible
fluctuation contribution for a given dissipation, meaning
jFðωÞj−1 ≤ 1. At high frequencies the distribution function

of a fully thermalized system asymptotically approaches
this value. In our nonequilibrium system we see that in
some cases the inverse distribution jFðωÞj−1 approaches 1
over a range of frequencies; however, in all cases it falls
below one at higher frequencies, indicating higher fluctua-
tions than for a thermal state. The results shown give some
indication that, at least for Fig. 2(g), the FðωÞ approaches a
thermal form more closely at larger g.
The right column of Fig. 2 compares the MPS results

(points) to analytic spin-wave theory [53,63], which is valid
if the density of excitations is small. We see a good
agreement between spin-wave theory and MPS numerics
at Δ ¼ 0.05 for σx correlations (we do not show the σz

spectra for this Δ, as these vanish in the linearized spin-
wave theory). Remarkably, the agreement for FðωÞ is better
than for SðωÞ, χ00ðωÞ individually. It is notable that despite
being a linear (i.e., noninteracting) theory, the spin-wave
result reproduces both the low-energy effective temperature
and the emergent plateau FðωÞ ≃ 1 at intermediate frequen-
cies. The distribution function of spin-wave theory can
be understood as a weighted average of k-dependent
function Fðω; kÞ ¼ ð2Teff;k þ λkω

2Þ=ω, with weighting
by the k-dependent density of states [53]. This form (which
follows directly from the structure of the relevant linearized
theory) leads directly to the existence of a low-energy
effective temperature. The plateau at FðωÞ ≃ 1, seen only at
larger g, results from the local spectra averaging over many
momentum states [53]; however, the form Fðω; kÞ inevi-
tably leads to FðωÞ ∝ ω at high frequencies, corresponding
to the breakdown of the plateau.
As well as the deviation from the thermal FðωÞ, a second

distinction from an equilibrated system is that both the
distribution and the low-energy effective temperature
extracted differ depending on the system operator con-
sidered. Figure 3(a) shows how Teff of σx and σz correla-
tors vary with transverse-field g. Figure 3(b) shows
similar results for the spin-wave theory at small Δ for σx

and σy correlators (as noted above, σz correlators vanish
in a linearized theory). We observe that for Δ → 0,
g → ∞ the σx;y excitations thermalize to the same effective
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FIG. 2. Spectrum of fluctuations SðωÞ, imaginary part of
response function χ00ðωÞ, and inverse distribution function
FðωÞ−1. Left two columns: Ising limit Δ ¼ 1. The right column
shows Δ ¼ 0.05 where spin-wave theory (solid lines) matches
well. Energies given in units of J. Other parameters used:
κ ¼ 0.5.
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We find Teff by fitting FðωÞ ≃ A cothðbωÞ for low frequencies
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temperature, Teff ≈ −g=2. This can be understood as Teff;k

becomes k independent in this limit, see [53].
We only show results for g > 0 in Fig. 2, since there

exists a simple duality allowing us to relate the form of
SðωÞ, χ00ðωÞ, FðωÞ−1 for values g and −g. This duality,
discussed in [20] arises because a combination of g ↦ −g
and a π rotation of the spin on every second site leads to
H ↦ −H. (A more general discussion of such dualities
can be found in [64].) This duality means that on changing
the sign of g, the state of the system should correspond
to reversing the sign of all energies. We may then note
that fluctuation and dissipation spectra show different
parity; χ00ð−ωÞ ¼ −χ00ðωÞ, while Sð−ωÞ ¼ SðωÞ, and so
Fð−ωÞ ¼ −FðωÞ. As such, the energy sign reversal under
g ↦ −g yields a sign change of the distribution function
and effective temperature. We find g < 0 gives positive
temperatures, and g > 0 negative temperatures. This is
consistent with the spatial ordering seen [20]: for Teff < 0
there is a high energy antiferromagnetic state. A more
intuitive understanding of this comes from the fact that g is
proportional to the pump-cavity detuning, so that g < 0
corresponds to a red-detuned pump and consequent cool-
ing, while g > 0 corresponds to blue detuning. Blue-
detuned pumping is typically associated to heating; here
it does lead to energy accumulation, but this induces a
negative temperature state, rather than high positive tem-
peratures. At g ¼ 0, the susceptibility χ00ðωÞ vanishes, so
FðωÞ−1 ¼ 0 and the effective temperature diverges.
So far, we have evaluated correlation functions at equal

positions; this corresponds to recording all light from
one cavity, which implicitly integrates over momentum.
More information on the structure of the correlations is
available if we consider the momentum-resolved spectrum.
This requires evaluating correlations at nonequal sites i, j,
and performing a double Fourier transform with respect
to separation in time t and space ji − jj. The resulting
fluctuation spectra Sðω; kÞ are displayed in Fig. 4 [the
response function χ00ðω; kÞ shows similar features as
Sðω; kÞ]. We show the case for Ô ¼ σx; σz, and two values
of g (we consider only g > 0, since the duality discussed
above allows one to understand the effects of a sign change
of g). All the features visible in these spectra can be
described straightforwardly using excitation spectra
derived from the Jordan-Wigner solution of HTFI (see,
e.g., [65] for details).
At large positive g, the NESS is known [20] to be a

maximum energy state with spins pointing in the −ẑ
direction, opposing the magnetic field. The spectrum of
the σx operator corresponds to single spin flips, so it
follows the single particle dispersion ωðkÞ ¼ ϵðkÞ≡
2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 þ 2g cosðkÞ

p
(where we consider deexcitations

of the maximum energy state). This expression is shown by
the black line in Fig. 4(a). In contrast, the σz operator
corresponds to two-particle excitations, which come in two
varieties. The first one is a two-particle continuum with

ω ¼ ϵðk1Þ þ ϵðk2Þ; k1 þ k2 ¼ k. The envelope of these
states is given by ϵminðkÞ < ωðkÞ < ϵmaxðkÞ with
ϵmax =minðkÞ ¼ 4J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 � 2g cosðk=2Þ

p
, shown by the

dotted black lines in Fig. 4(b). The other kind of excitations
involves scattering existing particles from mode q to qþ k,
i.e., ωðkÞ ¼ Δϵðq; kÞ≡ ϵðqþ kÞ − ϵðqÞ. The dominant
contribution comes from q ¼ 0, since this corresponds to
the maximum energy mode, which is maximally occupied
for a negative temperature state. The black solid line shows
Δϵð0; kÞ which indeed matches the dominant feature
observed. Given these momentum-resolved results, the
momentum integrated spectral functions in Figs. 2(a)
and 2(d) can be easily understood, with peaks arising from
van Hove singularities at the band edges.
Near g ¼ 1.0 the NESS instead shows antiferromagnetic

correlations. The spectra here retain key features but are
distorted. In the σx spectrum, Fig. 4(c) and Figs. 2(a) and
2(d), the peaks at k ¼ �π become dominant. In the σz

spectrum, Fig. 4(d) and Figs. 2(b) and 2(e), the scattering
band and two-particle continuum overlap. The black lines
show the same expressions as discussed above. A ground
state phase transition occurs for jgj < 1, hence the gap
closing at g ¼ 1.0. In contrast, the NESS at g ¼ 1.0 already
enters an antiferromagnetic state. As such, it is unsurprising
these dispersions (which use normal state Jordan Wigner
forms) do not match the spectrum as well as they did at
g ¼ 1.0. As one continues to decrease g → 0 the spectrum
becomes further dominated by the modes near ω ¼ 0, as
seen in Figs. 2(a)–2(f).
In conclusion, we have calculated the two-time correla-

tions of a driven-dissipative coupled cavity array, providing
the fluorescence and absorption spectra. Because of the
duality between red- and blue-detuned scenarios, we find
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FIG. 4. Sðω; kÞ momentum-resolved fluctuation spectrum for
excitations of (a) σx at g ¼ 5.0; (b) σz at g ¼ 5.0; (c) σx at
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parameters used, κ ¼ 0.5.
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that a blue pump-cavity detuning produces a quasithermal-
ized state with a negative temperature. We have also shown
how the structure of FðωÞ and emergent thermalization can
be understood using a spin-wave theory, and how momen-
tum-resolved fluorescence reveals the nature of quasipar-
ticle excitations in the quasithermal state. The system we
have studied here is in the photon blockade regime, with at
most one excitation per site. This restricts us to study
“first-order” correlation functions. When generalizing to
problems with a larger on-site Hilbert space, second-order
photon counting correlations may also be of interest, in
revealing the coherence and statistics of any ordered state.
Our results illustrate how calculating such correlations of
the fluorescence can provide new insights into the state of
many-body driven-dissipative systems.
The research data supporting this publication can be

accessed at [66].
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