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We present an efficient Monte Carlo framework for perturbative calculations of infinite nuclear matter
based on chiral two-, three-, and four-nucleon interactions. The method enables the incorporation of all
many-body contributions in a straightforward and transparent way, and makes it possible to extract
systematic uncertainty estimates by performing order-by-order calculations in the chiral expansion as well
as the many-body expansion. The versatility of this new framework is demonstrated by applying it to chiral
low-momentum interactions, exhibiting a very good many-body convergence up to fourth order. Following
these benchmarks, we explore new chiral interactions up to next-to-next-to-next-to-leading order (N3LO).
Remarkably, simultaneous fits to the triton and to saturation properties can be achieved, while all three-
nucleon low-energy couplings remain natural. The theoretical uncertainties of nuclear matter are
significantly reduced when going from next-to-next-to-leading order to N3LO.
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Introduction.—Recent calculations of medium-mass and
heavy nuclei have demonstrated the importance of realistic
saturation properties of infinite matter for nuclear forces
derived within chiral effective field theory (EFT) [1–5].
While most nucleon-nucleon (NN) and three-nucleon (3N)
interactions fitted to only two- and few-body observables
are able to predict light nuclei in agreement with exper-
imental data, the theoretical uncertainties tend to increase
with increasing mass number A≳ 16 (see, e.g., Ref. [6])
and significant discrepancies to experiment can be found
for properties of heavy nuclei [7]. There have been efforts
to include properties of heavier nuclei in the optimization
of chiral nuclear forces [1]. Such interactions tend to
exhibit more realistic saturation properties of nuclear matter
and also show improved agreement with experiment
for energies and radii of medium-mass and heavy
nuclei [2,8–10]. However, the explicit incorporation of
nuclear matter properties in the optimization process of
nuclear forces has not been feasible so far due to the
computational complexity of such calculations.
Nuclear matter has been studied based on chiral NN and

3N interactions within coupled-cluster theory [11], quan-
tum Monte Carlo methods [12–14], the self-consistent
Green’s function method [15], and many-body perturbation
theory (MBPT) [16–24]. The advantages of MBPT are its
computational efficiency as well as the possibility to
estimate many-body uncertainties by comparing results
at different orders. So far, MBPT for infinite matter has
only been applied up to third order including also the
particle-hole channels [20,24], where N2LO 3N contribu-
tions beyond Hartree-Fock have been included as normal-
ordered two-body interactions [22,25,26]. Normal ordering

allows to incorporate 3N operators in form of lower-body
operators [27], and nuclear-structure calculations show that
this is an excellent approximation for softer chiral inter-
actions (see, e.g., Refs. [28,29]). In the MBPT expansion
around Hartree Fock this is a very natural approximation, as
the reference state is sufficiently close to the ground state.
There remain however significant challenges, especially
regarding the role of higher-order particle-hole vs. particle-
particle or hole-hole contributions as well as the inclusion
of next-to-next-to-next-to-leading order (N3LO) 3N inter-
actions beyond Hartree-Fock [18,23].
Novel framework.—In this Letter, we present a new

Monte Carlo framework for MBPT, which is tailored to
address these challenges. We perform our calculations
directly in a single-particle product basis jkiσiτii, without
needing involved partial-wave decompositions. Tracing
over spin jσii and isospin states jτii of each particle with
label i is fully automated, whereas the multidimensional
integrals over the momenta ki are computed using adaptive
Monte Carlo algorithms [30–32]. This makes implement-
ing arbitrary energy diagrams straightforward (including
particle-hole contributions), even up to high orders in
MBPT, while approximations in normal ordering are not
needed anymore. However, it is well known that the
number of diagrams at each order increases rapidly, with
3, 39, and 840 at third, fourth, and fifth order for NN-only
interactions [33,34]. Within our Monte Carlo framework,
a manual implementation of these would be feasible but
still tedious and at least inefficient. We therefore developed
an automatic C++ code generator based on the analytic
expression of a given diagram.
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In addition, we developed a general method to represent
chiral interactions exactly as matrices in spin-isospin space,
where the matrix elements are analytic functions of the
single-particle momenta ki in the programming language
C++. The automated generation of these interaction
matrices is close to the operatorial definition of chiral
forces [35–43], which we implemented with nonlocal
regulators up to N3LO. For the incorporation of NN
interactions whose operatorial structure is not directly
accessible (e.g., renormalization-group evolved poten-
tials), we sum the contributions from all partial-wave
channels for each Monte Carlo sampling point.
Specifically, in this first application, we consider all

contributions from NN interactions up to fourth order in
MBPT (around the Hartree-Fock reference state).
Contributions from 3N interactions are included exactly
up to second order, including residual 3N-3N terms,
which have only been evaluated so far for contact
interactions [44]. At third order, we neglect all terms
that involve at least one residual 3N contribution, whereas
at fourth order we neglect all 3N contributions. These
contributions turn out to be smaller (see discussion
below). This amounts to 4, 20 ¼ 3 × 23 − 4, and 24 ¼
39 − 15 diagrams at second, third, and fourth order,
respectively, with up to 21-dimensional momentum inte-
grals per diagram. The number of diagrams at third
(fourth) order can be reduced by 4 (15) at zero temper-
ature. In comparison, a full calculation would involve
39 × 24 ¼ 624 fourth-order diagrams.
We assess the numerical convergence of the integration

by varying the number of sampling points as well as
employing two different Monte Carlo algorithms [31],
in addition to the variance as statistical uncertainty.
The framework is remarkably efficient due to performance
optimization and parallelization. Most diagrams up to
fourth order can be evaluated within about 10 min to a
precision of ≲10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N inter-
actions requires more time due to the higher dimension-
ality of the momentum integrals. However, the precision
can be controlled in a systematic way when short runtimes
are important, e.g., for optimizing nuclear interactions.
Finally, we have performed detailed benchmarks against
third-order results in the literature (see Supplemental
Material [45]), including for the dilute Fermi gas [46]
and semianalytical as well as partial-wave-based MBPT
calculations [24,47].
Results for nuclear matter.—In Fig. 1 we present results

for the energy per particle in symmetric nuclear matter
and neutron matter based on the Hebeler+ [16] and
NNLOsim [6] NN and 3N interactions up to fourth order
in MBPT. For symmetric matter we show the empirical
saturation region by a gray box with boundaries n0¼
0.164�0.007fm−3 and E=A¼−15.86�0.37�0.2MeV,
where the first uncertainty is as in Ref. [22] and we add

0.2 MeV from Ref. [48]. We also give results for the
symmetry energy Esym ¼ E=N − E=A as well as its slope
parameter L ¼ 3n0∂nEsym at n0 ¼ 0.16 fm−3 (dashed ver-
tical line). Both are predicted with narrow ranges.
The Hebeler+ interactions [16] were obtained by a

similarity renormalization group evolution [27] of the
N3LO NN potential of Ref. [49] to different resolution
scales λ, whereas the two leading-order 3N couplings cD
(one-pion-exchange contact interaction) and cE (3N contact
interaction) were fixed at these resolution scales by fits to
the 3H binding energy and the 4He charge radius for two
different 3N cutoffs Λ3N. Note that these potentials include
NN (N3LO) and 3N forces (N2LO) up to different orders in
the chiral expansion. Despite being fitted to only few-body
data, these interactions are able to reproduce empirical
saturation in Fig. 1 within uncertainties given by the spread
of the individual Hebeler+ interactions [16]. In addition,
recent calculations of medium-mass to heavy nuclei based
on some of these interactions show remarkable agreement
with experiment [2,4,8–10,50] and thus offer new ab initio
possibilities to investigate the nuclear chart.
The second column of Fig. 1 shows results for the

NNLOsim potentials [6] (Tmax
lab ¼ 290 MeV) for different

cutoff values (see legend). These interactions were obtained
by a simultaneous fit of all low-energy couplings to two-
body and few-body data for ΛNN ¼ Λ3N. We observe a

FIG. 1. Energy per particle of neutron matter (top row) and
symmetric nuclear matter (bottom row) based on the
Hebeler+ [16] and NNLOsim [6] NN and 3N interactions
(columns). Results are shown for λ=Λ3N for the interactions of
Ref. [16] and Λ ¼ ΛNN;3N for those of Ref. [6].
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weak cutoff dependence for these potentials in neutron
matter over the entire density range and in symmetric matter
up to n≲ 0.08 fm−3. At higher densities, the variation of
the energy per particle increases up to ∼3 MeV at n0 ¼
0.16 fm−3 with a very similar density dependence. Overall,
all the NNLOsim interactions turn out to be too repulsive
compared to the empirical saturation region.
We study the many-body convergence of the Hebeler+

and NNLOsim interactions by plotting in Fig. 2 the
calculated saturation energy as a function of the calculated
saturation density at second, third, and fourth order in
MBPT. The annotated values denote the cutoff scales of
the different potentials (see legend of Fig. 1). For all
low-momentum interactions as well as with Λ ≤ 525 MeV,

we observe a very good convergence in the many-body
expansion, indicating that these chiral interactions are
perturbative over this density regime. Moreover, we find a
pronounced linear correlation similar to the Coester line [51].
In contrast to the original Coester line with NN potentials
only, the green band encompassing all (fourth-order) satu-
ration points in Fig. 2 overlaps with the empirical saturation
region because of the inclusion of 3N forces. Notice,
however, that no point lies within the gray box. Note also
that the Hebeler+ interaction that breaks most from the linear
correlation is “2.0/2.0 (PWA),” for which the ci values in the
3N forces are larger than in the NN part [16].
Finally, in Table I we show the hierarchy of contributions

from second, third, and fourth order at n0 ¼ 0.16 fm−3

for the Hebeler+ “1.8=2.0” interaction, which is most
commonly used in the recent ab initio calculations of
medium-mass and heavy nuclei. At second order, we give
the contributions from NN interactions (NN-only), from
NN plus 3N contributions that can be represented in form
of a density-dependent NN interaction (NNþ 3N), and the
residual 3N contribution (3N res.). We find that the residual
3N term is significantly smaller compared to the other
contributions. Furthermore, we find that the third-order
contributions are significantly smaller than the second-
order terms for all studied interactions. These findings
suggest that the studied interactions exhibit a natural MBPT
convergence pattern for a cutoff of 450 MeV, whereas we
already find first indications of a reduced convergence rate
for Λ ¼ 500 MeV. Additional higher-order implementa-
tions will, however, be necessary to draw final conclusions
on the convergence.
Fit to saturation region.—The observed convergence

pattern indicates that the studied unevolved nonlocal
interactions with Λ ≤ 525 MeV are sufficiently perturba-
tive and allow calculations with controlled many-body
uncertainties. This offers the possibility to use the new
Monte Carlo framework for constraining the 3N couplings
using information from nuclear matter. In this Letter, we
demonstrate this using the N2LO and N3LO NN potentials

FIG. 2. Correlation between the calculated saturation density
n0 and saturation energy E=A for the Hebeler+ [16] and
NNLOsim [6] NN and 3N interactions obtained at second, third,
and fourth order in MBPT. The values of λ=Λ3N and ΛNN ¼ Λ3N,
as well as the saturation region are as in Fig. 1. The diamond
refers to the NNLOsat result [1].

TABLE I. Contributions to the energy per particle at n0 ¼ 0.16 fm−3 in symmetric nuclear matter at consecutive
orders in MBPT based on the Hebeler+ [16] interaction with λ=Λ3N ¼ 1.8=2.0 fm−1 and the N2LO and N3LO
interactions of this work with Λ=cD [for the central cD fit value (black diamonds) in Fig. 3]. All energies are in MeV.

Second order Third order Fourth order

Chiral order Λ=cD NN-only NNþ 3N 3N res. NNþ 3N NN-only NNþ 3Na

N3LO=N2LO λ=Λ3N ¼ 1.8=2.0 fm−1 −2.30 −2.54 −0.10 −0.10 −0.20 −0.07
N2LO 450=þ 2.50 −6.23 −13.38 −0.42 −2.08 0.07 0.24

500= − 1.50 −8.61 −14.49 −0.66 −0.77 0.32 0.75
N3LO 450=þ 0.25 −8.84 −14.52 −0.32 −2.28 0.61 1.03

500= − 2.75 −10.56 −14.98 −0.83 −1.05 0.65 1.14
aContributions from 3N forces at fourth order in MBPT are not included in our fits. The values here are an
uncertainty estimate using normal-ordered 3N contributions in the P ¼ 0 approximation, where the center-of-mass
momentum of the effective two-body potential is set to zero [22,25].
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of Entem, Machleidt, and Nosyk (ENM) [43] with ΛNN ¼
450 and 500 MeV, which are also very promising in terms
of their Weinberg eigenvalues [52]. As a first step, we fit
to the 3H binding energy that leads to a relation of the 3N
couplings cD and cE (shown in Fig. 1 of the Supplemental
Material [45]). For the fits, we include all 3N contributions
consistently up to N2LO and N3LO, respectively. The
corresponding 3N matrix elements were computed as in
Ref. [53]. We use Λ ¼ ΛNN;3N and a nonlocal regulator of
the form fΛðp; qÞ ¼ exp½−ððp2 þ 3=4q2Þ=Λ2

3NÞ4� for the
Jacobi momenta p and q of the initial and final states [36].
For both cutoffs and chiral orders, we obtain cE couplings
of natural size in the wide cD range explored.
As a second step, we calculate nuclear matter for the

range of 3N couplings and determine the saturation point.
In Fig. 3, we present the saturation points at N2LO and
N3LO as a function of cD and at different orders in MBPT.
Similar to the interactions shown in Fig. 2, we
find a natural convergence pattern. Note that the shown
points on the trajectories correspond to different cD
values at second order compared to third and fourth order.
Contributions at third order are therefore more significant
in these cases, whereas fourth-order corrections are again
much smaller as is shown in Table I (the convergence
at fixed densities is documented in Table I of the
Supplemental Material [45]). In general, Fig. 3 demon-
strates that it is possible to determine natural cD=cE
combinations at N2LO and N3LO with good saturation
properties for both cutoff cases considered. However,
N3LO contributions provide slightly too much repulsion.
In each panel of Fig. 3, we mark the three couplings that

provide a good fit to the saturation region by black
diamonds, with annotated cD values (the corresponding
cE values are given in Fig. 1 of the Supplemental
Material [45]). The resulting equations of state of symmetric
nuclear matter and neutron matter at N2LO and N3LO are

shown in Fig. 4. Note that only two lines are present in
neutron matter since the shorter-range 3N interactions do not
contribute [25]. We also calculate the Hartree-Fock energy of
the N3LO 4N forces using the nonlocal regulator as in
Ref. [18]. These forces are long range and free of unknown

FIG. 3. Saturation density and energy of symmetric nuclear matter at different orders in MBPT for the NN and 3N interactions at
N2LO and N3LO. The points are for different values of cD (annotated numbers; cE follows from Fig. 1 of the Supplemental
Material [45]), while the red-dotted, green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth order in
MBPT. The left (right) two panels are for N2LO (N3LO) with Λ ¼ 450 and 500 MeV. The diamonds in each panel represent the
calculations with a simultaneous good reproduction of both saturation density and energy at fourth order.

FIG. 4. Energy per particle in neutron matter (top row) and
symmetric nuclear matter (bottom row) based on chiral inter-
actions at N2LO (first column) and N3LO (second column) fit
to the empirical saturation region (see Fig. 3). The fits are labeled
by Λ=cD in the legend. The blue (Λ ¼ 450 MeV) and gray
(Λ ¼ 500 MeV) bands estimate the theoretical uncertainty fol-
lowing Ref. [42]. Note that the annotated results for Esym and L
do not include this uncertainty.
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parameters [39,40]. The obtained 4N Hartree-Fock energies
at n0 are ≈ − ð150–200Þ keV in neutron matter as well
as symmetric matter, in agreement with the results of
Ref. [18]. As for the Hebeler+ and NNLOsim results, the
symmetry energy and the L parameter are predicted with a
remarkably narrow range. In symmetric matter, we also
observe a weak cutoff dependence at N3LO, whereas the
results for Λ ¼ 450 MeV are clearly separated from Λ ¼
500 MeV at N2LO, with the former achieving the
best fits to the saturation region. Finally, we estimate the
theoretical uncertainty from the chiral expansion following
Ref. [42], using Q ¼ p=Λb with breakdown scale Λb ¼
500 MeV and average momentum p ¼ ffiffiffiffiffiffiffiffi

3=5
p

kF. The bands
overlap from N2LO to N3LO, and we clearly see that the
uncertainties are significantly reduced at N3LO.
For reference, results at LO and NLO are shown in Fig. 2
of the Supplemental Material [45].
Summary.—We have presented a new Monte Carlo

framework for calculations of nuclear matter, which allows
us to include higher-order contributions from chiral inter-
actions and is capable of going to high enough orders in
the many-body expansion for suitable interactions. The new
method was applied to the calculation of the symmetric-
matter and neutron-matter energy in an expansion around
Hartree-Fock, but it can be easily generalized to expansions
around other reference states. This enabled first benchmarks
of chiral low-momentum interactions to fourth order in
MBPT showing a systematic order-by-order convergence.
We then used this to develop new chiral interactions at N2LO
and N3LO, including NN, 3N, and 4N interactions at N3LO,
where the 3N couplings are fit to the triton and to saturation
properties. Our work shows that a good description of
nuclear matter at these orders is possible, with a systematic
behavior from N2LO to N3LO and natural low-energy
couplings. Thanks to the computational efficiency, the
new framework is also ideal for the incorporation of nuclear
matter properties in the fitting of novel nuclear interactions.
It will be exciting to see what these interactions predict for
nuclei and for the equation of state for astrophysics.
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