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We report the first observation of the spontaneous polarization of Λ and Λ̄ hyperons transverse to the
production plane in eþe− annihilation, which is attributed to the effect arising from a polarizing
fragmentation function. For inclusive Λ=Λ̄ production, we also report results with subtracted feed-down
contributions from Σ0 and charm. This measurement uses a dataset of 800.4 fb−1 collected by the Belle
experiment at or near a center-of-mass energy of 10.58 GeV. We observe a significant polarization that rises
with the fractional energy carried by the Λ=Λ̄ hyperon.

DOI: 10.1103/PhysRevLett.122.042001

The Λ hyperon plays a special role in the study of the
spin structure of hadrons due to its self-analyzing weak
decay. The observation of large transverse polarizations of
Λ hyperons in unpolarized hadronic collisions over four
decades ago [1] was contradictory to the understanding at
the time that transverse single-spin asymmetries are sup-
pressed [2] in perturbative QCD. This tension helped put in
motion a program to study transverse-spin phenomena [3],
which has been a major focus of the hadron physics
community ever since. Even though there has been tre-
mendous progress in understanding transverse spin phe-
nomena, the original hyperon polarization phenomenon [4]
still eludes a definitive explanation. A real difficulty is that,
in hadronic collisions, it is not possible to disentangle
initial-state effects related to dynamics inside the colliding
hadrons, and final-state effects, related to the fragmentation
of the partons.
The fragmentation function (FF), describing the produc-

tion of transversely polarized Λ hyperons [5] from unpolar-
ized quarks, is denoted byD⊥Λ=q

1T ðz; p2⊥Þ [6,7]. It depends on
the fractional energy z of the fragmenting quark carried by

the observed hyperon and the transverse momentum of the
hyperon p⊥ relative to the parent quark. Beyond its con-
nection to the phenomenology of Λ production, D⊥Λ=q

1T has
recently been a focus of intense theoretical interest [7–12]
because it is time-reversal odd (T odd). It is known that the
gauge structure of QCD universality is modified for the
Sivers function, which can be seen as the counterpart of
D⊥Λ=q

1T for the parton distribution function [13–17]. The
question of modified universality is equally important for
FFs [9], and an extraction of D⊥Λ=q

1T would be the first
measurement of a T-odd and chiral-even FF. The chiral
evenness of D⊥Λ=q

1T arises from the fact that the fragmenting
quark is unpolarized, so this function does not have to be
sensitive to the spin of the quark. The chiral evenness is of
importance as a test of universality: since the perturbative
QCD interactions conserve chirality, chiral-odd functions
appear only in combination with other chiral-odd functions,
so that the sign is difficult to determine. We present here the
first observation of the transverse polarization ofΛ hyperons
produced in eþe− annihilation, from which D⊥Λ=q

1T can be
extracted.
A dataset of 800.4 fb−1 at or near

ffiffiffi
s

p ¼ 10.58 GeV
collected by the Belle experiment [18] at the KEKB [19]
eþe− collider is used. The Belle detector is a large-solid-
angle magnetic spectrometer that consists of a silicon
vertex detector (SVD), a central drift chamber (CDC),
an array of aerogel threshold Cherenkov counters (ACC), a
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barrel-like arrangement of time-of-flight scintillation coun-
ters (TOF), and an electromagnetic calorimeter (ECL)
comprised of CsI(Tl) crystals located inside a supercon-
ducting solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return located outside of the coil is instru-
mented to detect K0

L mesons and to identify muons. For
systematic studies and to correct the data for detector
effects, Monte Carlo (MC) simulated events are generated
using PYTHIA6.2 [20] for fragmentation and EVTGEN [21]
for particle decays, then processed with a full simulation of
the detector response based on a GEANT3 [22] model of
the Belle detector. This measurement considers the proc-
esses eþe− → ΛðΛ̄ÞX as well as associated production
eþe− → ΛðΛ̄Þh�X, where h denotes a light hadron (h ¼ π,
K) on the opposite side and provides additional information
on the fragmenting quark flavor [9].
Using the event-shape-variable thrust T a sample of light

and charm quark fragmentation events eþe− → qq̄ðq ¼ u;
d; s; cÞ is selected [23,24]. The thrust T is defined in
the eþe− center-of-mass system as T ¼ maxðPijT̂ · pij=P

ijpijÞ. Here, pi are the momenta of all detected charged
particles and neutral clusters in the event, and T̂ indicates
the unit vector along the thrust axis. All charged tracks in
the event, with the exception of theΛ daughter particles, are
required to originate within a region of less than 2.0 cm in
the transverse (r − ϕ) plane and 4.0 cm along the beam (z)
axis with respect to the eþe− interaction point (IP). In order
to select pions, kaons, and protons, we used likelihood
ratios calculated utilizing energy-loss measurements in the
CDC, time-of-flight information from the TOF, and light
yield measurements from the ACC [25]. We require
T > 0.8, which reduces the contribution of ϒ events to
less than 1%. In each event, we reconstruct Λ candidates
from the decay mode Λ → pπ−. The daughter proton and
pion are constrained to a decay vertex, and the four-
momenta are updated with the vertex constraint. The Λ
candidate is required to have a displaced vertex, consistent
with a long-lived particle originating from the IP. The Λ
signal is clearly observed in the invariant mass (Mpπ− )
spectrum, and the purity of the Λ (Λ̄) is about 91% (93%).
The light hadrons in the associated production are selected in
the hemisphere opposite to the Λ. Hemispheres are assigned
according to the thrust axis, where the axis direction is
chosen in such a way that it points into the same hemisphere
as the Λ, that is T̂ · pΛ > 0 and T̂ · ph < 0. The polar angle
of the light hadrons ranges from about 0.4 to 2.8 rad in the
eþe− center-of-mass system.
The transverse momentum of the Λ, pt, is measured with

respect to either the thrust axis of the event, or the
momentum of the observed hadron in associated produc-
tion. We refer to these as the “thrust frame” and the “hadron
frame,” respectively. We define the direction n̂ along which
the polarization of Λ is investigated as n̂ ∝ m̂ × p̂Λ, where
m̂ is equal to T̂ (−p̂h) in the thrust (hadron) frame. Given a

transverse polarization P of the Λ, the distribution of
protons from the Λ decays is given by

1

N
dN

d cos θ
¼ 1þ αP cos θ; ð1Þ

where N is the total signal yield, θ is the angle between n̂
and the proton momentum in the Λ rest frame, and α ¼
0.642� 0.013 is the world average value of the parity-
violating decay asymmetry for the Λ [26]. Assuming CP
conservation, the value of α for the Λ̄ decay is of the same
magnitude as for the Λ with an opposite sign.
A linear average of the cos θ distributions of events in

the sideband regions of Mpπ− ½1.103; 1.108� GeV=c2 and
½1.123; 1.128� GeV=c2 is subtracted from that in the signal
region ½1.11; 1.12� GeV=c2 to exclude background contri-
butions. The transverse polarization of the Λ is investigated
as a function of zΛ and pt, where zΛ ¼ 2EΛ=

ffiffiffi
s

p
. Four zΛ

bins with boundaries at zΛ ¼ ½0.2; 0.3; 0.4; 0.5; 0.9�, four pt
bins with boundaries at pt¼½0.0;0.2;0.5;0.8;1.6�GeV=c,
and five cos θ bins are adopted in the thrust frame. Because
of the smearing in the reconstruction of zΛ, pt, and cos θ,
bin-to-bin migrations are expected. Based on MC simu-
lations, we find that in the thrust frame, the bin migration
is dominated by the smearing in pt, which is caused by the
resolution of the thrust axis. Depending on the zΛ range,
between 2% and 35% of the events are falsely reconstructed
in the adjacent pt bins. An unfolding procedure based on
the singular value decomposition (svd) is used to correct
the zΛ, pt, and cos θ smearing and detector efficiencies
simultaneously [27]. The response matrix is estimated from
MC simulations. The unfolded cos θ distributions are
then self-normalized: RðθÞ ¼ NðθÞ=hNi, where hNi≡
Nevent=nbins denotes the averaged number of events per
cos θ bin, Nevent is the total number of events in a given
[zΛ, pt] bin, and nbins ¼ 5 is the total number of cos θ bins.
The normalized cos θ distributions are then individually fit
using the function 1þ f0 cos θ, where f0 is a free param-
eter. The magnitude of the polarization is P ¼ f0=α.
The obtained polarizations are displayed in Fig. 1.
A significant transverse polarization is observed. In

general, the magnitude of the polarization rises with zΛ.
The pt behavior is more complex and depends on the zΛ
range. For zΛ > 0.5, where the Λ is the leading particle,
and for zΛ < 0.3, we observe rising asymmetries with pt.
In contrast, for intermediate zΛ, the dependence seems to be
reversed. This behavior may be caused by different quark-
flavor contributions in the different [zΛ, pt] regions, as
different quark flavors can give rise to different polar-
izations and kinematic dependencies. Based on MC [28]
studies, for Λ [29], in the highest zΛ bin, the s quark
contribution is dominant. In the intermediate two zΛ bins,
there is less s quark contribution compared to the highest
zΛ bin. The contribution of u quarks, which could produce
polarization with a different sign compared to s quarks,
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might cancel the s quark contribution and cause the
reversed pt dependence. However, it should also be noted
that there is a larger charm contribution in the two
intermediate zΛ bins [28].
Considering associated production of a light hadron on

the opposite side, four zh bins with boundaries at zh ¼
½0.2; 0.3; 0.4; 0.5; 0.9� are adopted, where zh ¼ 2Eh=

ffiffiffi
s

p
.

In the hadron frame, the detector smearing effects are found
to be negligible because of the much better resolution of
−p̂h compared to that of T̂. Also, less than 5% of events are
falsely reconstructed in the wrong zΛ or zh bins. Thus, svd
unfolding is not applied here. The efficiency-corrected
cos θ distributions are fit in the same way as those in the
thrust frame. Because of particle misidentifications, the
purity of the πþ (π−) is about 91.8% (94.8%) and that of
Kþ (K−) is 87.4% (69.8%), based on MC simulations.
The contributions from misidentified h� are included in the
results without further correction. The amplitudes of the
transverse polarization of Λ hyperons as a function of zΛ
and zh calculated in the hadron frame are shown in Fig. 2.
These results can give additional insight into the quark
flavor fragmenting into the Λ. In particular, in the low zΛ
region, the polarization in ΛhþX and Λh−X is significantly
different, even showing opposite sign and a magnitude that
increases with higher zh. In contrast, in the region zΛ > 0.5,
the differences between ΛhþX and Λh−X are modest,
although deviations can still be seen.
We investigate the flavor of the (anti-)quark going into

the same hemisphere with the Λ particles using MC
simulations. We find that the flavor tag of the light hadron
depends on zh and zΛ [28]. At low zΛ [29], the contribu-
tions of the various quark flavors for Λ are nearly charge
symmetric in processes ΛhþX and Λh−X. In general,
the results suggest that the Λ polarization from s quark

fragmentation is negative because, in ΛKþX at high zΛ,
where s to Λ fragmentation absolutely dominates, the
observed asymmetries are negative. In Λπ−X and ΛK−X
at low zΛ, u toΛ fragmentation dominates, and the observed
positive asymmetries suggest that the u quark fragmentation
to Λ is positive. In Λπ−X and ΛK−X at high zΛ, there is a
larger contribution from s compared to low zΛ, resulting in
negative polarizations. For ΛπþX at low zΛ, ū fragmenting
into a Λ dominates, and the observed polarizations are
negative. At high zΛ, s fragmenting into Λ is dominant,
resulting in negative polarization. The sign of the Λ polari-
zation fragmenting from d quarks is not well determined.
The results presented in Figs. 1 and 2 show the transverse

polarization for inclusive Λ particles, including those
directly produced from qq̄ fragmentations and those
indirectly produced from decays. Based on MC simula-
tions, about 30% of Λ candidates come from charm, mainly
via c → Λc, and in light quarks (uds) about 20% of the Λ
candidates come from Σ0 and 10% from Ξ decays. We note
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FIG. 2. Transverse polarizations of Λ’s observed in Λπ�X (a),
ΛK�X (b), Λ̄π�X (c), and Λ̄K�X (d), as a function of zΛ and zh
in the hadron frame. The different panels show the different zΛ
regions as labeled on the plots. Error bars indicate the sum of
statistical and systematic uncertainties added in quadrature. The
shaded areas show the uncertainties from α.
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FIG. 1. Transverse polarization amplitudes of inclusive Λ’s as a
function of zΛ and pt in the thrust frame. The top (a) and bottom
(b) plots display the results for Λ and Λ̄, respectively. The sum of
statistical and systematic uncertainties are indicated by the error
bars and the shaded areas show the uncertainties from α.
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that the strong decays, such as that of Σ�, are considered as
part of the fragmentation function. The charm is expected
to be different from light quarks because it is much heavier;
thus we need to also separately correct for the charm
contribution. To study direct fragmentation of light quarks
into Λ hyperons, also the contributions from Σ0 and Ξ
decays need to be taken into account [30]. The polarization
of Λ’s resulting from Ξ0 decays is assumed to be same with
that from Ξ− decays. We analyzed Σ0-, Ξ-, andD-enhanced
samples. The D-enhanced sample serves as a tag for charm
events. The Σ0 is reconstructed from Σ0 → Λγ, and the Ξ is
reconstructed from Ξ− → Λπ−, while D mesons are recon-
structed using theD0 → K−πþ andDþ → K−πþπþ modes.
No hemisphere requirement is imposed on the Σ0 or Ξ
candidates. D candidates are required to be in the opposite
hemisphere. An invariant-mass window is required to select
the Σ0ðΞ; DÞ-enhanced sample. Events without Σ0ðDÞ
candidates are referred to as the Σ0ðDÞ-suppressed samples.
The Ξ-enhanced sample is found having consistent polar-
izations with the nominal sample within statistical uncer-
tainties. Also, given the relatively smaller contribution, Ξ is
considered as part of the signal. We correct for the feed
down from charm and Σ0 in light quarks. The measured
polarization can be expressed as

Pmea ¼
�
1 −

X
i

Fi

�
Pprompt þ

X
i

FiPi; ð2Þ

where Pprompt is the polarization of signal Λ particles from
light quarks, Pi is the polarization associated with the ith
feed-down process, and Fi is the fraction of the ith
process. The Fi are estimated from MC simulations but
scaled according to measured cross sections for Σ0 [31]
and D mesons. We have three main processes for feed-
down production of Λ particles: from Σ0 decays in uds,
from Σ0 decays in charm, and from other sources in
charm. We have four measurements of polarizations
with different Fi using four samples: Σ0-enhanced-D-
enhanced, Σ0-enhanced-D-suppressed, Σ0-suppressed-
D-enhanced, and Σ0-suppressed-D-suppressed. Then the
feed-down-corrected polarizations are determined by
solving Eq. (2) for the five zΛ bins in the thrust frame.
We cannot consider the transverse momentum dependence
in either reference frame due to limited statistics. The bin-
to-bin migrations are not significant between different
zΛ bins, and hence the svd unfolding is not applied here.
A factor estimated from MC simulations, which ranges
from 1.1 to 1.3, is used to correct for the detector smearing
effects on the cos θ distributions. The feed-down-cor-
rected results are shown in Fig. 3. Given the large
uncertainties, no strong conclusion can be drawn from
the results for Λ from charm production or Σ0 decays.
Systematic uncertainties from the sideband subtraction

are estimated by varying the scale factor of events in the

sidebands. When the shape used to describe the back-
ground contributions under theMpπ− mass peak is changed
from a first-order to a second-order polynomial function,
the obtained scale factor increases from 1.0 to 1.3. The
resulting variations on the polarizations range from 0.000
to 0.002 for different bins and are assigned as systematic
uncertainties.
The uncertainty due to finite MC statistics in the svd

unfolding is assigned as a systematic uncertainty [27]. The
resultant uncertainties range from 0.001 to 0.016 for
different bins. The reconstructed zΛ and pt distributions
are found to be slightly different in data and MC simu-
lations. The response matrix of the MC simulations thus is
varied according to these differences and the changes on
the obtained polarizations, which range from 0.000 to
0.033 for different bins, are assigned as systematic uncer-
tainties. For the feed-down-corrected results shown in
Fig. 3, the uncertainties of the correction factor for detector
smearing from limited MC statistics are assigned as
systematic uncertainties.
We estimate the systematics from possible nonlinear

cos θ contributions by adding a second-order term to the
fitting model, described as f0 þ f1 cos θ þ f2 cos2 θ,
where f0, f1, and f2 are free parameters. The differences
in the extracted polarizations (f1=α) from the nominal
values, ranging from 0.0000 to 0.0003, are assigned as
systematic uncertainties. All systematic uncertainties are
then added in quadrature. In addition, the scale uncertainty
from the decay parameter α [26] is assigned and displayed
separately as shaded areas in the figures.
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FIG. 3. The charm corrected unfolded transverse polarizations
of prompt Λ’s from uds fragmentation (blue crosses) and Λ’s
from Σ0 → Λγ decays (red squares) in uds fragmentation,
compared to the original polarizations observed for inclusive
Λ’s (green dots), as a function of zΛ in the thrust frame. Error bars
show the statistical and systematic uncertainties added in quad-
rature. The shaded areas show the uncertainties from α.
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We perform two checks to verify that our measurement
is not biased. First, the reference axis is replaced by
n̂0 ≡�p̂Λ × n̂, which is still normal to the Λ direction
but in the Λ production plane. Second, we use event mixing
by reconstructing Λ candidates using a proton and a pion
from different events. No significant bias is observed.
In summary, we have studied the transverse polarization

of ΛðΛ̄Þ in the inclusive processes eþe− → ΛðΛ̄ÞX
and eþe− → ΛðΛ̄Þh�X with the data collected by Belle.
A significant transverse polarization is observed, which is
the first such observation in eþe− annihilation. Its magni-
tude as a function of zΛ and pt is presented, and increases
with zΛ as predicted [9]. The results are consistent between
inclusive Λ and Λ̄ production. By selecting an identified
light hadron in the opposite hemisphere, we obtain sensi-
tivity to the flavor dependence of the observed polarization.
Strong flavor dependences are seen in the ΛðΛ̄Þh�X
measurements. Our results suggest positive polarization
for u (ū) quark fragmentation to a Λ (Λ̄) and negative
polarization for s (s̄) quark fragmentation to a Λ (Λ̄).
A conclusive understanding needs more dedicated studies
with theoretical calculations. Furthermore, we attempt to
separate the contributions for directly produced Λ particles
from light quarks and those from charm and Σ0 decays. The
results presented in this Letter provide rich information
about the transverse polarization of Λ hyperons and will
further contribute to the understanding of the fragmentation
processes in Λ production. These results will also be useful
to test the universality of T-odd FFs, in combination with
data from hadron collisions [1,32–36] and future semi-
inclusive deep-inelastic scattering data.
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