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A systematic procedure for constructing classical integrable field theories with arbitrarily many free
parameters is outlined. It is based on the recent interpretation of integrable field theories as realizations of
affine Gaudin models. In this language, one can associate integrable field theories with affine Gaudin
models having arbitrarily many sites. We present the result of applying this general procedure to couple
together an arbitrary number of principal chiral model fields on the same Lie group, each with a

Wess-Zumino term.
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Introduction.—The very scarceness of the property of
integrability in classical and quantum systems makes its
ubiquity in high energy physics as well as its rich history in
condensed matter physics seem even more remarkable. For
instance, integrability has played a pivotal role in recent
years (see, e.g., the review [1]) in the study of the various
instances of the AdS/CFT correspondence, which brought
about a new surge of interest in the field of both classical
and quantum integrability. In particular, it has led to the
development of numerous new methods as well as to the
discovery of new integrable models.

One particular aspect of the subject of classical integrable
field theories which has proved extremely fruitful in some of
these recent developments is the concept [2-5] of the twist
function. This is a rational function ¢(z) of the spectral
parameter z which, for a very broad family of classical
integrable field theories, controls the integrable structure of
these theories through the Poisson bracket of the Lax matrix.
It was proved [2,4—15] that this family includes nonlinear
integrable ¢ models and, in particular, ones which are
relevant to the study of the AdS/CFT correspondence. In
this setting, the twist function can be used, for instance, to
deform these theories while preserving integrability [8,12].

Recently, it was shown by one of us in [16] that classical
integrable field theories admitting a twist function can be
seen as realizations of classical Gaudin models associated
with an affine Kac-Moody algebra. Gaudin models are
usually associated with finite dimensional Lie algebras, in
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which case they are thought of as spin chains. In the SU(2)
case, they can be obtained as limits of the inhomogeneous
Heisenberg XXX chain. Therefore, it may seem somewhat
surprising, at first, that an integrable field theory can be
recast as an affine Gaudin model. However, it is important
to stress that the spin chain in the affine case is not being
used in the conventional way, as a discretization of the field
theory in which fields arise from taking a continuum limit
by letting the number of sites go to infinity. Rather, classical
fields emerge upon realizing the underlying affine Kac-
Moody algebra as a centrally extended current algebra on
the circle.

Viewing the above class of integrable field theories in
this new light opens up the possibility of constructing new
classical integrable field theories by considering more
general affine Gaudin models. Indeed, all the examples
of integrable field theories discussed in [16] essentially
correspond to affine Gaudin models with a single site. It is,
then, natural to seek to construct field theories which
correspond to affine Gaudin models with an arbitrary
number of sites. The concrete implementation of such a
construction will be presented elsewhere [17], focusing on
the class of field theories which are described by the
simplest class of Gaudin models, namely, the noncyclo-
tomic ones. Classical integrable field theories which are
known [16] to be realizations of this class of affine Gaudin
models include the principal chiral model and integrable ¢
models obtained from it by adding a Wess-Zumino (WZ)
term or by performing a non-Abelian T duality [18].
Various integrable deformations of the principal chiral
model also belong to this class, namely the inhomogeneous
[19] and homogeneous [20] Yang-Baxter deformations as
well as the A deformation [21]. Finally, this class also
contains the inhomogeneous Yang-Baxter deformation
with a Wess-Zumino term constructed in [22,11].
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To illustrate the main idea behind the construction, it is
useful to recall that, when regarded as an integrable spin
chain, a (classical) Gaudin model has the following two
salient features: (i) the degrees of freedom, i.e., “spins,” at
different sites mutually (Poisson) commute, and (ii) the
Hamiltonian describes interactions between the spins at
every pair of sites.

Consider an affine Gaudin model with an arbitrary
number of sites N. It follows, from property (i), that its
phase space is a Cartesian product of N separate phase
spaces attached to individual sites. We can take the latter to
be the phase spaces of N different integrable field theories,
each described by single site Gaudin models associated
with the same affine Kac-Moody algebra. It then follows,
from property (ii), that the N integrable field theories,
which we chose to attach to the different sites, will become
coupled, with the strength of the couplings determined by
the relative location of each site in the complex plane.

When the N integrable field theories we start with are
Lorentz invariant, it is also natural to require the coupled
theory to be relativistic. There are certain necessary and
sufficient conditions restricting the choice of Hamiltonian
for the coupled theory which ensure that this is the case. We
obtain, in this way, a relativistic integrable field theory
which couples N relativistic integrable field theories.

The purpose of the present Letter is to report on the result
of applying this procedure to N coupled principal chiral
model fields on the same Lie group, each with a Wess-
Zumino term. In particular, we present the action of the
resulting coupled ¢ model and give the Lax connection
underlying its integrability.

The model.—Action: Let us fix a set of 3N + 1 real
parameters zj,...,2y, (t,...,(%, and £%°. It will be
convenient to gather these together into a single rational
function of the spectral parameter z, with double poles in
the set P = {z;,...,zy} and simple zeroes in Z* U Z~
where Z* = {{f, ..., 5 ). Explicitly, we define

]rV:1(Z - Cri)
Ni(z-z)

In the language of affine Gaudin models, the case N = 1
corresponds to the twist function of the principal chiral
model with a Wess-Zumino term [16]. For arbitrary N, the
above rational function ¢(z) can be taken as the twist
function for an affine Gaudin model with N sites.

In terms of the above data, the action obtained in [17]
from this N-site affine Gaudin model takes the form

N
S[gM, ..., g™ = //dtdx S pux(G )
r.s=1

N
+ Z % Iwz[g"], (2)
r=1

@(2) ==%p (2)p-(2), @+(2)= (1)

where g(’) for r =1, ..., N are fields valued in a real Lie
group G,. We define the currents jg) =¢"=19,¢"), and
the light-cone derivatives are given by d. = 0, £ 0,. In
this expression, « is the opposite of the Killing form on g,
the Lie algebra of G. Iwz[g] is the Wess-Zumino term

Iyzlg) = /// dtdx déx(g~'0zg. (971 0.9.97'D,9]).

The two dimensional domain with coordinates (¢, x) (which
may be a cylinder or a plane) is the boundary of the three
dimensional domain with coordinates (z, x,&). The coef-
ficients p,, and 2, are determined from the factorization of
the twist function in (1) as

bﬂoo
Prr = 4 <§0C§—,r<zr)(p—,r(zr) - (p+,r(zr)§0,—.r<zr))’
_ 0 (2)e- ()
s 2 7, — 2 '

£, = %oo (@ (@) (2) + 0029 (). (3)

for any r # 5. Here, we introduced, for each » =1, ..., N,
the two rational functions

¢1.,(2) = (2= 2,)0+(2),

which are regular at z,.

We note that there is some redundancy in the choice of
the 3N + 1 parameters encoded in the twist function (1).
Indeed, the expressions (3) for the coefficients entering the
action are invariant under the transformation

Z, — az, + b, % —s a” '™,
for any real constants a and b, so that there are a total of
3N —1 free parameters in the action (2), including the
overall factor 7. In the case when N = 1, this gives two
free parameters p;; and 2, as expected for the action of a
single principal chiral model field ¢(!) with a Wess-
Zumino term.

The action (2) describes a ¢ model on the target space
GyN. The geometry of this target space restricted to the rth
copy of G alone is given by a metric proportional to the
Killing metric and controlled by the coefficient p,,, along
with a B field originating from the Wess-Zumino term,
controlled by the parameter 2,. This describes a self-
interaction of the field g\”) with itself, similar to the one of a
single principal chiral model with Wess-Zumino term. In
addition to these self-interaction terms, the action (2) also
contains couplings between the different fields g{), con-
trolled by the off-diagonal coefficients p,,. As these
coefficients are not symmetric, these interaction terms
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contribute to both the metric and the B field of the target
space geometry on GiV.

Field equations and Lax connection: The field equa-
tions obtained by determining the extrema of the action (2)
with respect to the N fields ¢\")(x, ), taking into account
relations (3), may be written as

Virlar) o i _P=rar)

§0+r(Zr) @— r(zr)
*Z(U)@ 2+ 1)
_(/M(’?Sf((js)_z)(a_j@ + [j@,j(f)])) =0 @

The ¢ model defined by the action (2) is integrable by
construction. The light-cone components of its Lax con-
nection can be expressed succinctly, again in terms of the
factorization (1) of the twist function, as

zfﬂi r x.1). (5)

r=1 (pi r

th

Making use of the identity

1 1

pia(z) rs @i ,(z,) ©)

for r,s =1,...,N, we note that £, (z,,x,1) :jir)(x, 1).
The zero curvature equation for the Lax connection
a+£_ - a_£+ + [£+, AC_:I - 0, (7)
holds for any value of the spectral parameter z. When
multiplied by [T, (z — &) (z — £;), the left hand side of
(7) becomes a polynomial in z of degree 2N — 1. Therefore,

it leads to 2N equations among the fields. The first N of
these, obtained by setting z = z,, are the Maurer-Cartan

equations for the currents ji_f) (x,1). The remaining N
equations are most easily obtained by taking a derivative
of (7) with respect to z and then setting z = z,. Making use
of the identity (6) and of

i (90:|:,r(zr))
dz \ ¢4 4(2)
one checks that the last N equations coincide with (4).
Twist function and integrability:  The integrability of the
field theory defined by the action (2), that is, the existence of
an infinite family of integrals of motion in involution, is
guaranteed from the outset since it was obtained as a
realization of an affine Gaudin model [16]. In particular,
by construction, the Lax matrix £ =3 (£, — £_) has the
following (equal time) Poisson bracket with itself which
takes on the special r/s form [23]:

1
=2

=2z

{L1(z.x), L2(w. )} = [Raa (2. W), L1(2. )]6(x — y)

- [RZI <W7 Z)v 'CZ(Wv y)]5(x - y)

= (Raz(z,w) + R (w,2))8' (x = y),
where §(x —y) is the Dirac & distribution. Here, we have
defined the R matrix

RIZ(Zv W) =

p(w)™,

w—2

where Cy, is the split Casimir of the complexification g of gj,.
The twist function ¢(z) is the same as in (1).

The twist function is known to play a fundamental role in
many aspects of the classical integrability of field theories
which can be realized as affine Gaudin models. For
instance, in these theories, an infinite family of Poisson
commuting local charges can be constructed as the integrals
of certain invariant polynomials of ¢(z)L(z, x) evaluated at
the zeroes of the twist function [24].

Decoupling limit: In the model just described, a given
field g\")(x, ) at site z, is coupled to all the other fields
g™ (x, 1) at sites z,. It is possible to find a limit in which two
subsystems are pulled apart at infinite distance, and cease to
interact. The limit will be obtained by letting a real
parameter y tend to zero. We consider two models identical
to the one described in the previous paragraph, with,
respectively, N; and N, sites such that N+ N, =N and

with parameters z,S“), ¢ 5‘”* N,fora=1,2.The

latter determine factorizations of the twist functions ¢(®,
exactly as in (1),

,r=1,...,

P 9(2) =~ (z ><o<_a> (2).
@ _ I -4
(72 (Z) H (Z _ Zg )>

The parameters of the whole system are related to those of
the two subsystems by

C]j\:/ 4 é,£2)i

I<r<Ny,  Zyr= 2 +77h

Equivalently, we can write this more succinctly as

0:(2) =0V (20T 2 1),

Notice that one might have applied any permutation to the
sets P and Z* before applying this procedure, so that one
may freely choose the poles and zeroes of the two models
which are going to decouple. Then, one explicitly checks
that, in the decoupling limit when y tends to zero, one has
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S[g(l)’ ’g(N)] — S(l) [g(l)’ ’g(Nl)]
4 SN,

where S@ for a = 1, 2 is the action of the subsystem with
N, sites. We also have the limits

(1)

0:(2) = 0V (@), ez +717") = 07 (2),

as y — 0, together with

Lo(zox 1) = LY (zx1),

Lo(z+yx0) = L (zx0),

where E(ia )(Z,x, t),a =1, 2, is the Lax connection of the
subsystem with N, sites. Thus, one sees that, in the
decoupled limit where the system is composed of two
noninteracting subsystems, the complete Lax connection is
naturally valued in g @ g.

Global symmetries: Since the action (2) only depends
on the left invariant currents jgtr , the model with N sites is
invariant under the action of Gy given by

(g(l),

The corresponding Noether currents are most simply
obtained by conjugating the field equation (4) by ¢")
and rewriting it as 9, K" + 8_IC(+r) = 0 where

LgM) — (g, . hyg™), k€ G,.

/
K\ = i‘/’i,r(zr) (1) (r) (r)-1
(p:t,r(zr)

Because the currents at the various sites are all coupled,
the symmetry under right multiplication is limited to the
diagonal action of G, given by

h € G,.

The corresponding Noether current reads

N
K:i- == Z (pi,r(zr)j(j:)'
r=1

Its conservation 0, K_ + 0_K, =0 can be obtained by
taking a linear combination of the N equations of motion
(4) to eliminate the commutator terms. This symmetry is
enhanced in the decoupling limit, described in the previous
paragraph, to G x Gy.

Examples: As asimple illustration of the general action
in (2), let us consider the case of two sites, namely, N = 2,
with the parameters entering the twist function (1) chosen as

a=-n=yr". ({f==%l+r" G=x1-y7"

For the coefficients (3) in the action we then find

foo
Ry =—Fy= —?V3,

r(y +2)%

P11 = Pn = (2—}’2),

(6]
4
o0 (o)

4 2
plZ—_Ey(7_2) ) P21 16

The decoupling limit y — 0 is given by

(Se]

P11-P22 = 5>

3 P12: P21, By, By — 0. (8)

In this case, therefore, the action (2) describes, for y # 0, a
coupling of two principal chiral fields ¢'") and ¢(® valued in
the same real Lie group G,. We note the presence of a WZ
term for each of these fields in the coupled theory.

It is also possible to couple two principal chiral fields
without introducing WZ terms and with the same decou-
pling limit (8) by choosing the following set of parameters
of the twist function (1):

li::t\/1+y_2+\/1+4y_2,
Cf:$\/1+7_2—\/1+47/‘2.

Conclusion.—The general procedure illustrated in this
Letter opens up the possibility of constructing infinite
families of relativistic integrable field theories with a given
underlying Lie algebra. The basic building blocks for the
construction are relativistic integrable field theories which
can be realized as affine Gaudin models. An arbitrary
number of these building blocks can then be assembled
together to form a new relativistic integrable field theory. In
turn, since the latter is an affine Gaudin model by
definition, it could be used as a new building block for
subsequent constructions. Determining the scope of all
possibilities certainly requires a thorough investigation.

The fact that the twist function of the model we have
considered is a generic rational function with N double
poles and 2N simple zeroes makes it possible to see the
importance of this object permeating through to the very
expression of the action. Indeed, it is quite remarkable that
the parameters of the action can be so conveniently encoded
in a choice of factorization of the twist function.

To illustrate the method, we have focused on the class of
noncyclotomic affine Gaudin models. Working within this
class, it is possible to couple together any integrable o
model from the list given in the introduction, provided they
all involve the same Lie group. For instance, as a different
example to the one presented in this Letter, one could
couple together N — 1 principal chiral models, each with a
Wess-Zumino term, and one homogeneous Yang-Baxter

_ — 1
Zl__zz_y ’
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deformation of the principal chiral model. The resulting
integrable ¢ model will be presented in detail elsewhere
[17]. We expect that the class of noncyclotomic affine
Gaudin models also includes the model constructed very
recently in [25] which couples together two A models.

Another natural direction for further study would be to
extend the procedure to the class of cyclotomic affine
Gaudin models, which includes [16] the symmetric space ¢
model. The cyclotomic nature of the underlying affine
Gaudin model is related to the Z, grading associated with
this ¢ model, or in other words, to its gauge symmetry.
There are a number of interesting questions pertaining to
this class of affine Gaudin models. For instance, it is not
immediately clear what the gauge symmetry of an inte-
grable field theory corresponding to a cyclotomic affine
Gaudin model with multiple sites should be. Indeed, recall
that the principal chiral model on a real Lie group G, has
both a left and right G, symmetry. We may choose to
gauge, in an equivalent way, any subgroup of G, either
from the left or from the right. Choosing this subgroup H in
such a way that the coset, say on the right, Gy/H, is
symmetric ensures that the resulting ¢ model will be
integrable. For the model presented in this Letter, the
situation is more complicated since we have shown that the
left and right symmetries are different. From the analysis in
[16] and, in particular, the fact that the gauge symmetry is
related to the site at infinity (which is a fixed point of the
action of the cyclic group), we expect to be able to construct
a GgN/ H 4,y o model which is integrable. This situation
would be reminiscent of the models considered in [26] (see,
also, [27]) when the two Lie groups G and G’ are the same.
Another important question that will require a full analysis
is the issue of the decoupling limit within this class.

A possible next step would be to generalize the whole
procedure to the supersymmetric case. This would require
introducing the notion of classical affine Gaudin model
associated with a Kac-Moody superalgebra first. An
obvious question in this setting is to look for type IIB
superstring ¢ models which could be realized as super-
symmetric affine Gaudin models with multiple sites.

Having constructed classical integrable field theories
with arbitrarily many parameters, a very important and
natural question concerns the study of these models at the
quantum level. It would be very interesting to determine
the renormalization group flow in these multiparameter
field theories and identify their fixed points. The recent
results obtained for the models mentioned above in [25]
indicate a very rich structure in the renormalization group
flow of these models already in the case of two sites.
Moreover, the fact that the affine Gaudin model approach
to integrable field theories enables one to naturally con-
struct infinitely many new relativistic classical integrable
field theories corroborates the idea that this approach may
also be fruitful at the quantum level, even in the single site
case [16,28-30].
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