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The relaxation of binary spins to analog values has been the subject of much debate in the field of
statistical physics, neural networks, and more recently quantum computing, notably because the benefits of
using an analog state for finding lower energy spin configurations are usually offset by the negative impact
of the improper mapping of the energy function that results from the relaxation. We show that it is possible
to destabilize trapping sets of analog states that correspond to local minima of the binary spin Hamiltonian
by extending the phase space to include error signals that correct amplitude inhomogeneity of the analog
spin states and controlling the divergence of their velocity. Performance of the proposed analog spin system
in finding lower energy states is competitive against state-of-the-art heuristics.
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Many algorithms and hardware dedicated to solving hard
combinatorial optimization problems utilize a mapping of
the cost function to the energy landscape of simple physical
systems such as classical spins [1–5], quantum spins [6,7],
optical oscillators [8–12], solid-state oscillators [13,14], and
neural networks [15] (see [16–18] for reviews). From a
random initial state, the probability to find the lowest energy
states, or ground states, depends critically on whether the
nonequilibrium dynamics of such systems can escape
efficiently from local minima. The difficulty in solving hard
problems stems from the fact that the number of these local
minima, forwhich energy is not decreased by any single spin
flip at zero temperature, generally grows exponentially with
the problem size. By coupling the system to a (Markovian)
heat bath, transitions over energy barriers are allowed, and
convergence to the ground state is assured for a slow enough
decrease of the temperature [1,19]. Such approaches have
been improvedupon in recent years [2] andgeneralized to the
case of quantum spins in quantum annealing [6,7].
Alternatively, it has been suggested in various systems

(including soft spins [20], analog neural networks [15],
coherent Ising machines [8–11]) that relaxing the binary
spins σi ¼ �1 to analog values xi with xi ∈ Rmay increase
the probability of finding lower energy states. In these gain-
dissipative systems, combinatorial optimization is classi-
cally achieved by mapping local minima to fixed point
attractors [8,15]. These attractors are created because of
dissipation that induces phase-space contraction under the
action of the dynamics [21]. By tuning the gain, i.e., the

average energy supplied to the system, dissipation can be
compensated and the rate and directions in which phase-
space volumes are contracted can be controlled. Earlier
studies on the Hopfield neural network suggest that
reduction of the gain (or steepness of the neuron transfer
function) results in improved quality of solutions of
traveling salesman problems [15] and in the exponential
decrease of the number of fixed points [22,23]. Moreover,
gradual reduction of the gain, which can be related to
temperature via the naive mean field of Thouless,
Anderson, and Palmer, can serve as “mean field annealing”
[24,25]. In the framework of the coherent Ising machine, it
has been shown numerically [8] and experimentally [10,11]
that such machines can be used as an efficient heuristic
solver for hard combinatorial optimization problems such
as maximum cut (MAX-CUT, which is equivalent to Ising
problems). These schemes rely on setting the gain to a
minimum at which (most) suboptimal configurations, or
excited states, cannot be stable fixed points [8,26]. In the
field of combinatorial optimization, such analog systems
have been relatively less studied than their binary spin
counterparts, and it is believed that they do not perform as
well as state-of-the-art heuristics [27], notably because it is
difficult to map low energy configurations of the binary
system to analog states with smaller loss [26,28], although
these systems are ideal for efficient implementation on
dedicated hardware [10,15,29].
In this Letter, we argue that analog bistable systems,

even when simulated on a classical computer, can in fact
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find low energy states at least as efficiently as current state-
of-the-art heuristics. Our model is based on the observation
that the improper mapping of the objective function by the
loss landscape results from the fact that the amplitudes of
analog variables are, in general, heterogenous (i.e., not all
equal). We propose to correct the amplitude heterogeneity
by extending the phase space [30] using auxiliary degrees
of freedom, which we call error variables. The proposed
system utilizes the fact that the local stability (the Jacobian
matrix) of fixed points can be controlled a priori in analog
systems in order to reduce the number of stable local
minima. Moreover, we show that periodic and chaotic
attractors can be avoided by controlling the gain such that
the divergence of the error signal velocity is close to zero
but positive, which ensures that phase-space volumes in the
auxiliary subspace never contract and, in turn, forbids the
creation of attractors. The error variables play the role of a
non-Markovian reservoir that guarantees positive entropy
production in the system despite dissipation. We have
performed numerical simulations demonstrating that this
effect generalizes well by finding the ground states of spin
glasses and solving Ising problems from standard bench-
mark sets against state-of-the-art heuristics and suggest that
orders of magnitude decrease of the time to solution can be
obtained in the case of an implementation on an analog
Ising machine.
We consider a network of analog bistable units xi,

i ∈ f1;…; Ng, for which time evolution is given as
follows:

dxi
dt

¼ fi ¼ ϕðxiÞ þ eiIi; ð1Þ

where ϕðxiÞ represents the time evolution of isolated units
with ϕðxiÞ ¼ −ð∂Vb=∂xiÞ and Vb ¼ −ð−1þ pÞðx2i =2Þ þ
ðx4i =4Þ the paradigmatic bistable potential. The function
ϕðxiÞ can be written as ϕðxiÞ ¼ −xi þ pxi − x3i in which
the first, second, and third terms can be interpreted as the
loss, linear gain with rate p, and nonlinear saturation. These
dynamics can be used to describe various systems such as
soft spins [20], open-dissipative quantum systems such as
degenerate parametric oscillators [26,31–33], and weakly
coupled neural networks near pitchfork bifurcations [34].
For solving the combinatorial optimization problem that is
defined by the cost function VðσÞ, the coupling Ii is chosen
as Ii ∝ −½∂VðxÞ=∂xi�; i.e., I is the gradient of the potential
V. In particular, Ising problems with the cost function
VðσÞ ¼ H ¼ − 1

2

P
ijωijσiσj can be solved using the injec-

tion term Ii ¼ ϵ
P

jωijxj, with ϵ as the coupling strength
(ϵ > 0, ωii ¼ 0, and ωij ¼ ωji for j ≠ i).
In order to destabilize states that correspond to local

minima of the Ising Hamiltonian, we propose to control the
target amplitude, noted a with a > 0, of the variables xi by
other means than the linear gain p by considering the
following error signal induced by amplitude heterogeneity:

dei
dt

¼ gi ¼ −βðx2i − aÞei; ð2Þ

where ei and β are the error variables and the rate of change
of error variables, respectively, with ei > 0 and β > 0 [35].
First, we examine the existence of fixed point attractors.

The fixed points of the dynamical system described by
Eqs. (1) and (2) are given as follows:

(
dei
dt ¼ 0;
dxi
dt ¼ 0;

⇒

(
x2i ¼ a;

ei ¼ 1−pþa
ϵhiσi

;
∀ i; ð3Þ

where hi are the elements of the vector h ¼ Ωσ andΩ is the
matrix of couplings with Ω ¼ fωijgij. The configuration σ
corresponds to the sign of the state x at the fixed point. Note
that the analog states xi are exactly binary at the steady state
with xi ¼ σi

ffiffiffi
a

p
. Moreover, the internal fields hi are such

that hiσi > 0, ∀ i, at equilibrium when p < 1 because
ei > 0, ∀ i. Thus, all fixed points of the analog system
correspond to local minima of the binary spin system
at T ¼ 0.
The linear stability of these fixed points can be examined

by analyzing the following Jacobian matrix:

J ¼
�
Jxx Jxe
Jex Jee

�
; ð4Þ

with Jxx ¼ ð−1þ p − 3aÞI þ ϵD½e�Ω, Jxe ¼ ϵ
ffiffiffi
a

p
D½h�,

Jex ¼ −2β
ffiffiffi
a

p
D½σ · e�, and Jee ¼ 0. Moreover, D½X� is

the diagonal matrix with elements Dii½X� ¼ Xi and
Dij½X� ¼ 0 for i ≠ j, where Xi expresses the components
of a vector such as ei or hi. Note that JexJxe ¼ bI, with
b ¼ −2βað1 − pþ aÞ. The eigenvalues λ�j of the Jacobian
matrix can be explicitly calculated by considering its
characteristic polynomial and are given as follows:

λ�j ¼
(

1
2
½−2aþ ð1 − pþ aÞμj �

ffiffiffiffiffiffi
Δj

p � if Δj > 0;
1
2
½−2aþ ð1 − pþ aÞμj � i

ffiffiffiffiffiffiffiffiffi
−Δj

p � otherwise;
ð5Þ

with Δj ¼ ½−2aþ ð1 − pþ aÞμj�2 þ 4b, i2 ¼ −1, and μj
the jth eigenvalues of the matrix Ω̃ ¼ D½ðσ · hÞ−1�Ω − I
with ðσ · hÞ−1 ¼ fðhiσiÞ−1gi. Because the vector σ · h
has positive components at local minima, the eigenvalues
of D½ðσ · hÞ−1�Ω are the same as the ones of
D½ðσ · hÞ−1�12ΩD½ðσ · hÞ−1�12 (Sylvester’s law of inertia),
which is a symmetric real matrix. Thus, the eigenvalues
μj are always real.
The 2N eigenvalues of the system are always pairs λþj

and λ−j with j ∈ f1;…; Ng. Each pair becomes the same
real value when Δj ¼ 0, i.e., under the condition given as
follows:

θ ¼ G�ðβ; μjÞ; ð6Þ
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with θ ¼ ða=1 − pÞ and G�ðβ; μÞ ¼ f½4β − μðμ − 2Þ�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðβ þ μÞp �=½ðμ − 2Þ2 − 8β�g.
The stability of fixed points depends on the sign of the

real part of the eigenvalues of the Jacobian matrix. It can be
shown that Re½λþj � ¼ 0 in the following set (note that
Re½λþj � ≥ Re½λ−j �, ∀ j):

Re½λþj � ¼ 0 ⇔

�
θ ¼ 0 or θ ¼ −1; if Δj > 0;

θ ¼ F½μjðσÞ�; if Δj < 0;
ð7Þ

with FðμÞ ¼ −½μ=ðμ − 2Þ�. The parameter θ can be inter-
preted as the ratio between the target amplitude a and the
effective loss (the loss minus the linear gain p) of the
analog system. The stability of fixed points is illustrated in
Fig. 1 in the space fθ ¼ ½a=1 − p�; μjðσÞg, where θ depend
on the controllable parameters of the analog system,
whereas μjðσÞ are determined by the spin configuration
σ and couplings Ω. We denote μ0ðσÞ the maximum
eigenvalue of Ω̃ calculated at the fixed point x correspond-
ing to the configuration σ. The state x becomes unstable at a
supercritical Andronov-Hopf bifurcation when the real part
of the dominant eigenvalue of the Jacobian matrix J, noted
λ0ðσÞ, becomes positive, i.e., μ0ðσÞ > F−1ðθÞ for p < 1
(see Eq. (7)).
Next, we consider the existence of limit cycles and

chaotic attractors. A necessary condition for the existence
of these attractors is that the divergence of the velocity, or
equivalently, the rate of change of phase-space volumes, is
negative at the proximity of the trapping sets [21]. In order
to estimate the divergence at configuration σ, we utilize the
fact that the fast subsystem on x converges to the slow
manifold characterized by ðdxi=dtÞ ≈ 0, ∀ i, in the limit
β ≪ 1. Moreover, the analog states become approximately

binary in the limit of small coupling strength (ϵ ≪ 1)

with x2i given as x2i ¼ ðxð0Þi Þ2 þ 2ϵxð0Þi xð1Þi þOðϵ2Þ with

ðxð0Þi Þ2 ¼ −1þ p and 2ϵxð0Þi xð1Þi ¼ ϵeð0Þhiσi for p > 1

(see Supplemental Material [37]). The term eð0ÞðtÞ is
the zeroth order approximation of eiðtÞ with eiðtÞ ¼
eð0ÞðtÞ þ ϵeð1Þi ðtÞ þOðϵ2Þ, which is valid for eð0ÞðtÞϵ ≪
−1þ p, and eð0ÞðtÞ ¼ e−β

R
ð−1þp−aÞdt0 for eið0Þ ¼ 1, ∀ i.

Moreover, the first order term eð1Þi is given as eð1Þi ¼
−βϵeð0Þ½R t

0 hiðt0Þσiðt0Þdt0� and depends on the previous
history of states visited. Although this Taylor approxima-
tion is valid only for p > 1, numerical simulations show
that it is still accurate by continuity for p < 1 and j1 −
pj ≪ 1 for a finite value of ϵ. Then, the divergence of the
vector field g, defined as divg ¼ P

ið∂gi=∂eiÞ can thus be
approximated as follows (see Supplemental Material [37]):

divg ¼ β

�
Nð1 − pþ aÞ þ 2ϵe0ðtÞHðtÞ þO

�ðeð0ÞÞ2ϵ2
p − 1

��
:

ð8Þ

In order to prevent the system from being trapped in limit
cycles and chaotic attractors, we propose to set the
divergence of velocity in the auxiliary subspace on e to
be always positive along the trajectories of the system. This
can be achieved by modulating the target amplitude a as
follows:

a ¼ αþ ϵheiðtcÞhiðtÞσiðtÞi; ð9Þ

where α is the target amplitude baseline and tc, with tc < t,
is the time of the last change of configuration σ, i.e., the
time at which one of the xi has changed its sign. Moreover,
hXii denotes the ensemble average of Xi with hXii ¼
ð1=NÞPiXi. The control scheme described in Eq. (9)
implies, using Eq. (8), that the divergence is approximately
given as divg ≈ κ with κ ¼ Nβð1 − pþ αÞ as long as the
configuration σðtÞ switches rapidly before the error vari-
ables e blow up. The parameter κ can be set to κ > 0, ∀ t,
by modulating a and p such that the two conditions given
in Eqs. (7) and (9) are respected, which ensures that there
are no stable fixed points at suboptimal configurations and
that the divergence in the auxiliary subspace is always
positive, respectively. Note that, when β is very small, the
fast variables x are slaved to the slow error signals e. Thus,
positive divergence in the auxiliary subspace should imply
that the whole system cannot be trapped in a region of
negative divergence at the proximity of an attractor. In order
to verify this claim, we have simulated the proposed system
using the weights ωij from 5000, 5000, 3000, and 2000
instances of Sherrington-Kirkpatrick (SK) spin-glass prob-
lems (a nondeterministic polynomial-time hard problem) of
size N ¼ 80, 100, 150, and 200 spins, respectively [37].
For an instance of size N ¼ 100, Fig. 2(a) shows that the

FIG. 1. Bifurcation diagram in the space fθ ¼ ½a=1 −
p�; μjðσÞg at configuration σ. Thick lines correspond to the sets
where Re½λ�j � ¼ 0, i.e., θ ¼ 0, −1, or FðμjÞ with Δj < 0, and
dotted lines correspond to the sets where θ ¼ G�ðβ; μjÞ. In the
regions marked 1 and 2, the pair of eigenvalues λþj and λ−j are
complex conjugate with negative real parts and positive real parts,
respectively, whereas in regions 3–5, they are both real with both,
none, and one of their real parts being negative, respectively.
β ¼ 0.2. Andronov-Hopf bifurcation (AH).
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system exhibits constant phase-space volume expansion or
contraction in the auxiliary subspace e when κ > 0 and
κ < 0, respectively. Moreover, the system does not become
trapped in an undesirable attractor and the ground-state
configuration of the Ising Hamiltonian is visited with
probability P0 ¼ 1 from any random initial condition when
κ ≫ 0 [see Fig. 2(b)]. As the constant divergence in the
auxiliary subspace is increased, the system always visits a
ground-state configuration, but the time to solution
increases, which is likely a consequence of the fact that
the dynamics becomes more complex [36]. Therefore, the
optimal regime for finding lower energy states is for
positive but small divergence of the auxiliary subspace
velocity. In this case, the probability of finding the ground
state from a randomly chosen set of initial conditions is
superior to 99.9% even for N ¼ 200 (see Fig. 3). Thus,
numerical simulations suggest that the system does not
become bounded within a subspace. Further analysis is
necessary, however, for clarifying the conditions, such as
the maximal value of β, under which this is the case. The
proposed dynamics finds ground-state configurations more
reliably than the state-of-the-art algorithm, called the
breakout local search (BLS) [38], for harder problem
instances. Figure 3 shows that the proportion of unsolved
instances p0ðtÞ is well fitted by a power law such that p0 ∼
t−γðNÞ for t ≫ 0. The positive divergence implies that error
variables eventually become very large. However, the
parameter κ can always be chosen sufficiently small such
that a ground-state configuration is visited before the error
variables blow up, which is confirmed by our numerical
simulations. In practice, the error variables are rescaled
such that eiðtÞ ¼ ½eiðt−Þ=heiðt−Þi�, with t− < t, whenever
the mean error signal heiðt−Þi is superior to the threshold,
noted Γ, in order to insure the stability of numerical
simulations. Note that the proposed scheme does not

guarantee that the best solution found after t is the
optimal one (but see [39] for a heuristic approach to
predicting the likelihood of optimality for maximum
satisfiability problems).
The increase of dynamical complexity that results from

the addition of the amplitude heterogeneity error correction
scheme can be interpreted in terms of entropy. With the
adiabatic elimination of the fast variables x, the sign of the
entropy production rate ðdS=dtÞ [40,41], defined as
ðdS=dtÞ ¼ R

ρðeÞdivgde, with as S the Gibbs entropy
S ¼ −

R
ρðeÞlnρðeÞde and ρðeÞ the probability density of

states, is equal to the sign of κ when using the control
of divergence proposed in Eq. (9). Thus, the coupling
to the auxiliary subspace implies that the system has
always a positive production of entropy despite dissipation
when κ > 0.

(a) (b)

FIG. 2. Control of the divergence in the auxiliary subspace. (a) Divergence divg in the auxiliary subspace vs normalized simulation
time t. After some transient behavior, the divergence is constant and approximately described by its analytical value divg ≈ κ.
(b) Divergence divg and average time htsoli for finding the ground state of the Ising Hamiltonian with a probability superior to 99% with
tsol ¼ ht0i½logð0.1Þ= logð1 − P0Þ� for P0 < 0.99, and tsol ¼ ht0i otherwise, with P0 and ht0i (see inset) the probability of finding the
ground state during a single run and averaged time to solution for successful runs, respectively.

(a) (b) (c) (d)

FIG. 3. Proportion p0ðtÞ of instances unsolved, i.e., for which a
ground-state configuration has not been found, after the CPU
time t in seconds of the SK problems of size N ¼ 80, 100, 150,
and 200 shown in (a)–(d), respectively, for the proposed scheme
and the BLS algorithm [38] in the logarithmic scale. The
95% confidence interval shown by dotted lines is calculated
using 20 runs per instance.
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For further comparison against state-of-the-art algo-
rithms, the proposed scheme is adapted for solving
MAX-CUT problems of theG set [38], which is a reference
benchmark used in the community of combinatorial opti-
mization. When simulated on a desktop computer, the
scheme can achieve performance in terms of solution
quality and time to solution that is qualitatively similar
[42] to that of the BLS [38], which itself outperforms other
recent heuristics on MAX-CUT problems. For several
instances, the proposed scheme finds solutions of better
quality than previously known from [38] (see the
Supplemental Material [37] for details of the benchmark
on the G set). Importantly, the advantage of the proposed
scheme relies on the ability to implement it on hardware
dedicated to solving Ising problems in the analog domain
[43]. If we assume that the presented scheme is realized in
hardware that has the same experimental parameters as
existing coherent-Ising-machine implementations [44],
then we predict that such a hardware solver will feature
a time to solution for solving Ising problems that is a factor
of 100–1000 smaller than that of the state-of-the-art
classical heuristic algorithms running on a conventional
desktop computer, even when the problem size is not large,
i.e., N ≪ 1000.

This research was supported by the ImPACT Program of
Council for Science, Technology and Innovation (Cabinet
Office, Government of Japan). We thank Ryan Hamerly
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manuscript.

Note added.—Recently, we were informed of related work
about amplitude heterogeneity error correction (see [45]).
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