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We report on the universality of height fluctuations at the crossing point of two interacting (1þ 1)-
dimensional Kardar-Parisi-Zhang interfaces with curved and flat initial conditions. We introduce a control
parameter p as the probability for the initially flat geometry to be chosen and compute the phase diagram as
a function of p. We find that the distribution of the fluctuations converges to the Gaussian orthogonal
ensemble Tracy-Widom distribution for p < 0.5, and to the Gaussian unitary ensemble Tracy-Widom
distribution for p > 0.5. For p ¼ 0.5 where the two geometries are equally weighted, the behavior is
governed by an emergent Gaussian statistics in the universality class of Brownian motion. We propose a
phenomenological theory to explain our findings and discuss possible applications in nonequilibrium
transport and traffic flow.
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Scale invariant fluctuations play a central role in the
emergence of universal properties in complex random
systems interconnecting various areas of physics, math-
ematics, and statistical mechanics. Whereas the concept
of universality classes is well established in the theory of
equilibrium phase transitions [1], our understanding of
systems driven out of equilibrium is much less complete
[2]. The Kardar-Parisi-Zhang (KPZ) equation [3] governing
the evolution of the surface height hðx; tÞ,

∂thðx; tÞ ¼ ν∇2hþ λ

2
ð∇hÞ2 þ ηðx; tÞ; ð1Þ

is a prototypical model for describing nonequilibrium
growing interfaces with a wide range of theoretical and
experimental applications [4–7]. The first term in (1)
represents relaxation of the interface caused by a surface
tension ν, the second describes the nonlinear growth locally
normal to the surface, and the last term is uncorrelated
Gaussian white noise in space and time with zero average
hηðx; tÞi ¼ 0 and hηðx; tÞηðx0; t0Þi¼ 2Dδdðx−x0Þδðt− t0Þ,
representing the stochastic nature of the growth process.
One recovers the Edwards-Wilkinson equation for λ ¼ 0.
The universality class of randomly growing interfaces is

usually characterized by the scaling exponents defined by
Family-Vicsek scaling [8], i.e., w2ðt; lÞ ∼ t2βfðl=tβ=αÞ, in
terms of the second moment w2ðt; lÞ of the height fluctua-
tions at a measurement scale l at time t, where fðxÞ →
const as x → ∞ and fðxÞ ∼ x2α as x → 0. Thus, w2 grows
with time like t2β until it saturates to l2α when t ∼ lα=β. The
universality class is characterized by the exponents α and β

(the roughness and the growth exponents, respectively),
whose exact values for the KPZ equation are known only in
1þ 1 dimensions [ð1þ 1ÞD] as α ¼ 1=2 and β ¼ 1=3.
In a series of pioneering works, it has been shown that

the universality in various growth models belonging to the
KPZ class holds beyond the second moment [9–11].
Unexpectedly, the height fluctuations of the ð1þ 1ÞD
single-step model (SSM) [12] grown from a point seed
were found to be governed [13] by the Tracy-Widom (TW)
distribution of the Gaussian unitary random matrix ensem-
ble (GUE) [14]. Thereafter, it was reported [15,16] that
the radial ð1þ 1ÞD polynuclear growth (PNG) model also
follows the TW GUE distribution, and in addition, the
Gaussian orthogonal ensemble (GOE) determines the
universality of the ð1þ 1ÞD KPZ growth models on a flat
substrate [16]. Recently, exact solutions of the ð1þ 1ÞD
KPZ equation have confirmed the TWGUE distribution for
the height fluctuations on the curved (wedgelike) [17,18]
and the TW GOE distribution on the flat geometries [19].
The key question of interest in this Letter is how these two
GOE and GUE universalities compete when two different
ð1þ 1ÞD KPZ growth models adopting the flat and curved
geometriesmeet eachother at a single commonpoint (Fig. 1).
The SSM is a solid on solid growth model in the KPZ

class in which at each time step on a 1D (flat or wedgelike)
lattice of size L, one site −L=2 ≤ j < L=2 is randomly
chosen, and if it is a local minimum the height hðjÞ is
increased by 2. The initial conditions at t ¼ 0 are hf0ðjÞ ¼
½1 − ð−1Þj�=2 and hw0 ðjÞ ¼ jjj for the flat and wedge
geometries, respectively. This definition guarantees that
at each step, the height difference between two neighboring
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sites is �1. The SSM is the growth model representation
[20] of the totally asymmetric simple exclusion process
(TASEP) in 1D, a paradigmatic model for driven transport
of a single conserved quantity [10].
Here, we consider growth on two crossing flat-wedge

substrates subject to the same growth rules but with an
exception at the origin x ¼ 0, where the two geometries
meet. The origin is the only site with four nearest
neighbors, the heights of which have to exceed the height
at 0 by one for growth to take place. This Letter studies the
statistics of the fluctuations of the height hð0; tÞ at the
crossing point at time t. Here, time is defined in terms of
the number of deposition trials per lattice site, either
successful or not. The initial conditions are set as men-
tioned above for each geometry so that hf0ð0Þ ¼ hw0 ð0Þ ¼ 0.
Periodic boundary conditions are applied along both
geometries. At each time step, one of the two flat or wedge
crossing geometries is chosen with probability p—the only
parameter in our study—and then a site j is randomly
chosen for the growth process. The flat geometry is chosen
with probability p and the wedge geometry with proba-
bility 1 − p. In the TASEP representation this corresponds
to two single-lane exclusion processes which meet at an
intersection. The growth rule at the origin implies that the
particles on the two lanes are forced to cross the inter-
section simultaneously. TASEP-like traffic flow models
with intersections have been studied before, but with
different crossing rules and without considering the current
fluctuations at the intersection [21–28].
Let us first examine the Family-Vicsek scaling for the

second moment of the height fluctuations at the origin, i.e.,
w2ðtÞ ¼ hh2ð0; tÞi − hhð0; tÞi2, for different values of p.
As Fig. 2 demonstrates, all curves for p ≠ 0.5 follow the
scaling law w2 ∼ t2β with the growth exponent β ¼ 1=3
predicted for the 1þ 1 KPZ equation. A remarkable
observation is that for p ¼ 0.5 when both geometries are
picked with equal probability, the variance of the height at
earlier times behaves as in the KPZ class, but later it crosses

over to the universality of the Brownian motion (BM), i.e.,
w2 ∼ t, with Gaussian statistics (see below).
Until now our analysis has revealed two interesting

facts: First, the point with p ¼ 0.5 acts as a distinguished
fixed point with a characteristic Gaussian statistics in the
universality of Brownian motion, and, second, for p ≠ 0.5
the statistics of the height fluctuations at the crossing point—
despite the existence of four nearest neighbors—is compat-
iblewith that of the ð1þ 1ÞDKPZ equationwhose long time
statistics converges to the TW GUE-GOE distribution
depending on the narrow-wedge or flat initial condition.
One might naively expect that for p > 0.5 for which the flat
geometry is chosen with higher probability, the height
fluctuations would converge to the GOE statistics and for
p < 0.5 where the wedge geometry is more likely to be
picked, they should be compatiblewith theGUEdistribution.
As we will show in the following, our results unveil exactly
the opposite behavior.
The local height of an ð1þ 1ÞD KPZ interface is

asymptotically given by the following relation [11],

h ¼ v∞tþ sλðΓtÞ1=3χ; ð2Þ
where sλ ¼ sgnðλÞ is the sign of the nonlinear parameter λ
in the KPZ Eq. (1), v∞ and Γ are nonuniversal parameters,
and χ is a stochastic variable with a universal TW
distribution depending on the flat or wedge growth geom-
etry. We estimate the parameter v∞ by extrapolating hhi=t
versus t−2=3, as an intercept in a linear regression in the
t → ∞ limit, i.e., hhi=t ¼ v∞ þ sλΓ1=3hχit−2=3 [29]. We
carried out extensive simulations to generate height profiles
of SSM on the flat-wedge geometry of linear size L ¼ 213

FIG. 2. Main: Second moment of the height fluctuations at the
crossing point of the flat-wedge geometry as a function of time
for several p from bottom to top. The dashed line shows the
scaling prediction w2 ∼ t2β for the ð1þ 1ÞD KPZ equation with
growth exponent β ¼ 1=3. All curves are shifted by a constant for
ease of comparison. Inset: The crossover from ð1þ 1ÞD KPZ
scaling at earlier times to the Brownian motion (BM) statistics at
long time limit for p ¼ 0.5. In order to clearly observe the
crossover to the BM regime, the simulations for p ¼ 0.5 were
carried out up to time t ¼ 106.

FIG. 1. Schematic of the crossing flat-wedge geometry with a
single common site in the middle.
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up to time t ¼ 2 × 104 for several values p ¼ 0.2, 0.3, 0.4,
0.45, 0.48, 0.49, 0.5, 0.51, 0.52, 0.55, 0.6, 0.7, 0.8. For each
dataset, an ensemble of 7 × 105 independent realizations
has been generated.
As shown in Fig. 3, we numerically find a simple relation

for v∞ as a function of the parameter p,

v∞ðpÞ ¼ minðp; 1 − pÞ: ð3Þ
Contrary to the naive expectation, this implies that the
substrate with the smaller growth probability dominates
the coupled process. To see why this is so, recall that the
asymptotic growth rate of a single ð1þ 1ÞD SSM interface
with periodic boundary conditions is given by v∞ ¼ ðγ=2Þ
ð1 − u2Þ, where γ is the rate of deposition attempts and u ∈
½−1; 1� is the surface slope [9,10]. Because the growth rate
is maximal at u ¼ 0, an SSM interface can lower its growth
rate by developing a nonzero slope, but it cannot increase its
growth rate beyond γ=2 [7,30]. In the present setting γ ¼ 2p
for the flat geometry and γ ¼ 2ð1 − pÞ for the wedge
geometry, respectively. To accommodate a common growth
rate at the origin, for p < 0.5 the flat interface grows at
maximal speed v∞ ¼ p, whereas the wedge interface main-
tains a nonzero tilt u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 2pÞ=ð1 − p

p Þ. For p > 0.5
the roles of the two substrates are interchanged and the
initially flat interface becomes wedge shaped (Fig. 4).
We next show that the dominance of the slower geometry

extends also to the height fluctuations at the origin. In order
to estimate the parameter Γ in Eq. (2), we define gn≡
hhnic=snλ tn=3¼Γn=3hχnic, where hχnic denotes the nth
cumulant of the random variable χ. We write Γn ¼
½gn=hχnic�3=n for the value of Γ estimated from the nth
cumulant. All estimates have to give rise to the same value
assuming that the cumulants of χ are those of the corre-
sponding TW GOE or GUE distributions. To find the
possible TW distributions, we use two dimensionless
Γ-independent measures, i.e., the skewness S ¼ g3=g

3=2
2

and the kurtosis K ¼ g4=g22, and compare them with those
of the TW distributions. Figure 5 represents the most

remarkable finding of our study: For p < 0.5 the statistics
of the height fluctuations of the crossing point in the
wedge-flat geometry is determined by the TW GOE
distribution, and, for p > 0.5 it is governed by the TW
GUE distribution. Therefore, we adopt the corresponding
cumulants of the TW distributions into the above relations
to extract Γn. We find that all Γn follow the same simple
relation with p as we found for v∞ðpÞ, i.e., ΓðpÞ ¼
minðp; 1 − pÞ—see the inset of Fig. 3. The relation Γ ¼
v∞ is a known property of the SSM [9].
Now we can directly check for universality by compar-

ing the height fluctuation distribution with the analytic
TW predictions. For this, we define a new variable q ¼
ðh − v∞tÞ=sλðΓtÞ1=3, and plot the rescaled distribution
functions PðqÞ for several values of p. Figure 6 shows an
excellent agreement with the corresponding TW distribu-
tions for p ≠ 0.5. The figure also shows the distribution

FIG. 3. v∞ (main panel) and Γn (inset) for the flat-wedge
geometry as a function of p.

FIG. 4. Snapshots for the time evolution of the height profiles
on the flat-wedge geometry for t ¼ 0 (left column), t ¼ 200
(second column), and t ¼ 2000 (right column) for p ¼ 0.3 (first
row), p ¼ 0.5 (second row), and p ¼ 0.7 (third row) correspond-
ing to the GOE, Gaussian (BM), and GUE universality classes,
respectively.

FIG. 5. Skewness (main panel) and kurtosis (inset) for the flat-
wedge geometry as a function of p.
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function of height fluctuations forp ¼ 0.5which is in perfect
agreement with the Gaussian distribution.
The fact that the fluctuations at the crossing point are

determined by the slowly growing interface can be most
easily understood in the TASEP representation. The growth
rule at the origin implies that a particle on the fast lane has
to wait for a particle on the slow lane to appear before it
can cross the intersection. Therefore, the statistics of the
crossing events is determined by the slower lane, and
follows TW GOE (TW GUE) statistics for p < 0.5
(p > 0.5), respectively. Whereas the dynamics on the slow
lane is asymptotically unaffected by the intersection, the
particles on the fast lane effectively experience a blockage,
which leads to the buildup of a density discontinuity across
the origin. In the interface representation this implies the
formation of a wedge (Fig. 4).
The physics of inhomogeneous growth processes [30]

and exclusion processes with a blockage [31–33] is also
key to understanding the emergent Gaussian statistics that
we observe at p ¼ 0.5. Consider first a single, initially flat
SSM interface where deposition attempts occur at unit rate
at all sites except a single defect site with deposition rate r.
This corresponds to a TASEP with a single slow (r < 1) or
fast (r > 1) bond. Recent work has established that the
defect induces a macroscopic inhomogeneity for any r < 1,
whereas it is asymptotically irrelevant when r > 1 [32,33].
We have numerically studied the height fluctuations at
the defect site, finding TW GOE statistics for r > 1 but
Gaussian BM statistics for r < 1. The latter behavior can be
rationalized within the directed polymer (DP) representa-
tion of the process, where the defect site extends to a defect
line in space-time which pins the polymer when r < 1
[6,7,32,34]. In the pinned phase the energy of the polymer,
which translates into the height of the SSM surface, is the
sum of uncorrelated contributions accumulated along the
one-dimensional defect line, which satisfies a central limit
theorem and therefore displays Gaussian statistics.

The crossing geometry at p ¼ 0.5 is similar to the SSM
with a defect site, in the sense that deposition occurs at
the same rate at all sites except for the origin, where it
is enhanced by a factor of r ¼ 2. By analogy with the
ð1þ 1ÞD SSM, one might anticipate the existence of a
critical value rc, such that the fluctuations display
Gaussian BM statistics for r < rc and KPZ TW statistics
for r > rc. However, our simulations of a crossing flat-flat
geometry with a variable deposition probability r at the
crossing point indicate that the critical point, which is at
rc ¼ 1 for the single lane problem, is shifted to large
rc → ∞, introducing the BM statistics as the dominant
process in the long-time limit for any r. This may reflect
the dynamic nature of the defect: Even when r is very
large, a TASEP particle attempting to cross the intersec-
tion still has to wait for a particle on the second lane to
arrive, which happens at unit rate irrespective of r.
In marked contrast to the ð1þ 1ÞD SSM, however, we
observe BM statistics in the absence of a macroscopically
tilted, wedgelike surface profile. To clarify the origin of
this behavior, a DP representation of the crossing growth
geometry would be needed.
To conclude, we have considered ð1þ 1ÞD KPZ growth

models on a weighted flat-curved geometry and analyzed
the statistics of the height fluctuations at the crossing
point. We found a rich and unexpectedly nontrivial phase
diagram comprising, in addition to the known TW GUE-
GOE phases, an emergent Gaussian BM phase at p ¼ 1

2
.

It is important to note that the dominance of the more
slowly growing geometry in the SSM is linked to the fact
that the coefficient λ of the KPZ nonlinearity is negative
in this case [9,30]. When λ > 0, the argument based on the
slope dependence of the asymptotic growth rate v∞ predicts
that the faster geometry determines the behavior, which
implies that the phase diagram is reflected around the point
p ¼ 1

2
. We have indeed verified that simulations of the

restricted-solid-on-solid model, which also has λ < 0, lead
to the same phase diagram.
At the critical point p ¼ 1

2
, the TASEP representation of

the model relates to previous work on exclusion processes
with intersections [24,26,28], with the seemingly innocu-
ous modification that particles are forced to cross the
intersection in a correlated manner. Our results suggest
that this makes the transport across the intersections much
more efficient, in that macroscopic density discontinuities
do not appear, while a signature of the intersection is
retained in the form of anomalously large, BM-type
current fluctuations. Importantly, the correlated hopping
of particles moving along perpendicular directions is a
fundamental feature of any particle representation of
higher-dimensional growth processes, which is enforced
by the integrability condition on the height field [4,35]. As
such, by introducing a single site with a two-dimensional
growth environment into an otherwise one-dimensional
setting, the model may provide an inroad for progress

FIG. 6. Rescaled distribution functions of the height fluctua-
tions for the crossing point of the flat-wedge geometry for several
values of p (symbols), compared with the TW GOE distribution
for p < 0.5, TW GUE distribution for p > 0.5, and Gaussian
distribution for p ¼ 0.5 (solid lines).
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towards an understanding of the elusive ð2þ 1ÞD KPZ
problem [36].
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