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We present an analog of the phenomenon of orthogonality catastrophe in quantum many-body systems
subject to a local dissipative impurity. We show that the fidelity FðtÞ, giving a measure for distance of the
time-evolved state from the initial one, displays a universal scaling form FðtÞ ∝ tθe−γt, when the system
supports long-range correlations, in a fashion reminiscent of traditional instances of orthogonality
catastrophe in condensed matter. An exponential falloff at rate γ signals the onset of environmental
decoherence, which is critically slowed down by the additional algebraic contribution to the fidelity. This
picture is derived within a second-order cumulant expansion suited for Liouvillian dynamics, and
substantiated for the one-dimensional transverse field quantum Ising model subject to a local dephasing
jump operator, as well as forXY andXX quantum spin chains, and for the two-dimensional Bose gas deep in
the superfluid phasewith local particle heating.Our results hint that local sources of dissipation can be used to
inspect real-time correlations and to induce a delay of decoherence in open quantum many-body systems.
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Introduction.—Anderson’s orthogonality catastrophe
(OC) [1] is a paradigm in solid state physics [2] highlighting
the sensitivity of a gapless many-body ground state to static
and dynamical local perturbations. An x-ray absorption
process creates into an electron gas a core holewhich acts as
a static potential, provoking a catastrophic response in the
system: the ground states of the electron gas, with and
without the core-hole potential, are orthogonal—the overlap
between the two scaling as a decaying power law of the
system size. Singular featuresmanifest in dynamical proper-
ties as well: the Green’s function of the core hole has a
power-law decay at long times, departing from a simple
free-particle behavior; in frequency domain, close to the
threshold energy, the x-ray absorption spectrum vanishes
algebraically, signaling the suppression of absorption proc-
esses in this energy window [3]. Orthogonality catastrophe
has been corroborated in a number of systems ranging from
Luttinger liquids [4] to Kondo models [5,6] and disordered
metals [7], and it has recently received novel attention
[8–16], thanks to experimental progresses in cold gases,
where local excitations can be created in a quantum many
particle system at ease [17,18].
The connection betweenOC and the return probability, or

Loschmidt echo [9,19–28] LðtÞ, is a recent interesting
development in this evergreen problem. The overlap
between the unperturbed ground state of a quantum Ising
chain at criticality jψð0Þi and the same state evolving in
the presence of a defect of strength δg along the transverse

field direction jψðtÞi exhibits an analogous algebraic
scaling behavior [29] to the one discussed above, LðtÞ ¼
jhψð0ÞjψðtÞij2 ∝ t−θ, with θ ∝ ðδgÞ2. The physical rationale
behind the “catastrophe” stands in the underlying criticality
of the many-body system upon which the perturbation is
applied: the diverging characteristic correlation length and
times at the critical point facilitate the spread of the local
disturbance across the whole system, making possible the
orthogonality among the initial state and the evolved one as
time increases. This setup can also be extended to non-
equilibrium closed environments [30]: the system is first
sent out of equilibrium by a quantum quench of a global
Hamiltonian parameter, and later subject to the action of a
local potential, resulting in a two-times orthogonality
catastrophe which may show such novel features as aging
dynamics [31].
In this work, we demonstrate that the phenomenon of OC

is not only exclusive to unitary dynamics, rather it can also
occur in a gapless quantum many-body system when a
local noisy or dissipative perturbation is suddenly switched;
this dissipative analog of the OC is presented through a
number of instances ranging from low-dimensional quan-
tum spin chains to the Bose-Hubbard model in the super-
fluid phase. In particular, we show the emergence of a
power law scaling in time for the fidelity (a proper analogue
of the Loschmidt echo for generic mixed states) of a system
with critical, or, in general, long-range correlations, in a
fashion reminiscent of the OC in closed gapless systems.
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However, contrary to traditional instances of OC, the
additional algebraic contribution to the fidelity determines
a critical slow down of decoherence. The paradigm shift
presented here for the OC can be experimentally accessible
as localized dissipations can be tailored in ultracold gases
[32–39], with the long-run perspective to employ local
dissipative channels to detect gapless modes in open
quantum many-body systems.
Orthogonality catastrophe from a Lindbladian

impurity.—To illustrate this concept, we consider as a
minimal model the one-dimensional quantum Ising chain
[40] in a transverse field, H0 ¼ −ðJ=2ÞPi½σ̂xi σ̂xiþ1 þ gσ̂zi �,
we prepare at time t ¼ 0 the system in its critical ground
state (g ¼ 1), and suddenly switch at subsequent times
t > 0 a spin-dephasing Lindblad operator, L̂ ¼ σ̂zj, acting
on a given site j of the chain. Using a Jordan-Wigner
transformation [40], the critical Ising chain can be mapped
into a one-dimensional system of gapless, free fermions
with a local dephasing noise, L̂ ∝ n̂j, occurring at rate

ffiffiffi
κ

p
,

and proportional to the density nj, of Jordan-Wigner
fermions. The dynamics of this system is accordingly ruled
by the quantum master equation,

_ρðtÞ ¼ −i½H0; ρðtÞ� þ κL½ρðtÞ�; ð1Þ

where L½ρðtÞ�¼ L̂ρðtÞL̂†−1
2
fL̂†L̂;ρðtÞg, and with L̂ ¼ L̂†,

L̂2 ¼ 1 in this specific case. The dynamics ruled by the
quantum master equation with Hamiltonian Ĥ0 and with
a single Hermitian Lindblad operator L̂ ¼ σ̂zj is equivalent
[41,42] to the stochastic Schrödinger evolution governed by

ĤηðtÞ ¼ Ĥ0 þ
ffiffiffi
κ

p
ηðtÞL̂; ð2Þ

where ηðtÞ is a Gaussian white noise and L̂ is, for instance, a
local spin perturbation along the transverse field direction, as
in the case under study in this work. The Lindblad evolution
of the density matrix, ρ̂ðtÞ ¼ etLρ̂0 ¼ hÛηðtÞρ̂0Û†

ηðtÞi, can
then be recovered averagingover the fluctuations of thewhite
noise, with ÛηðtÞ the time evolution operator of the time-
dependent Schrödinger equation at a fixed noise realization
ηðtÞ. The Hamiltonian Eq. (2) makes therefore clearer the
connection of our setup to more conventional instances
of OC, where algebraic scaling of the Loschmidt echo has
been evidenced in quantum Ising models of the form
Eq. (2) without adding a noisy character to the local
perturbation [29,43].
However, since the state of the system is mixed at times

t > 0, we need a generalized expression for the Loschmidt
echo in order to investigate the onset of an analogue of OC
in the dissipative critical quantum Ising chain. A natural
choice is represented by the Uhlmann fidelity [44,45],
which reduces to the Loschmidt echo when both states
are pure. If instead only the initial state is pure (as in the

case under inspection in this work), we observe that the
Uhlmann fidelity retains a convenient expression

FðtÞ ¼ hψð0Þjρ̂ðtÞjψð0Þi ¼ Tr½ρ̂ð0Þρ̂ðtÞ�; ð3Þ

which is amenable to analytical calculations. Intuitively, the
Loschmidt echo for an open system is equivalent (within
Born approximation) to the Uhlmann fidelity of a given
subsystem if the environment remains unaffected during
dynamics, since the latter can then be traced out [45]
(provided the initial density matrix is a factorized product
of the system and environment’s density matrices).
At the critical point, the quantum Ising chain reacts to the

presence of the local dephasing channel L̂, with a fidelity
which decays and scales at long times as

FðtÞ ∝ tþθe−γt; t ≫ 1=J: ð4Þ

The power-law character ∝ tþθ recalls the characteristic
algebraic response of a gapless quantum system to a local
perturbation [2,3,29], which signals the onset of the
phenomenon of orthogonality catastrophe. The exponent
θ ¼ 8=π2ð1 − 2nÞ2ðκ=JÞ2 is, however, positive, contrary to
unitary incarnations of OC (n is the local fermion density
on the site where the dissipative perturbation is applied, and
it is a function of the transverse field g; see, for instance,
Ref. [40]). This brings the qualitative difference that a new,
concave region (see also Fig. 1 and the discussion in the
following section) appears in the universal shape of FðtÞ, as
a result of the interplay between tþθ and the exponential
decay ∝ e−γt with decoherence rate γ ¼ 8κnð1 − nÞ—in
contrast to the monotonic convex behavior of the
Loschmidt echo in isolated systems. As in ordinary

FIG. 1. Comparison between the fidelity FðtÞ for a quantum
Ising chain with a spin-dephasing impurity (red line) and for the
same Ising chain with a local defect on the transverse field, at zero
temperature [29] (green line) and at finite temperature [30] (blue
line). The asymptotic behavior of the three curves is highlighted
on the right. The local Lindbladian channel results in a slower
decay of the fidelity compared to the other two cases. Close to
t≲ ð ffiffiffi

θ
p þ θÞ=γ the fidelity in the dissipative Ising model transits

from a concave universal behavior to the usual convex character
typical of isolated systems.
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instances of orthogonality catastrophe, the power-law term
is superseded when the many-body environment is away
from criticality.
Cumulant expansion for Lindblad dynamics.—In order

to find the long-time behavior Eq. (4), we design a second-
order cumulant expansion for the fidelity suited for
Lindblad dynamics, which generalizes analogous methods
developed for the calculation of the Loschmidt echo in
isolated systems [2,29]. The key idea is to express FðtÞ in
the superoperator formalism [46],

FðtÞ ¼ Tr½ρ̂ð0ÞetLρ̂ð0Þ�≡ ðρ0jetLjρ0Þ; ð5Þ
where etL is the superoperator corresponding to the
Lindblad dynamics in Eq. (1), acting on the supervector
jρ0Þ associated to the initial condition (the ground state
of the quantum Ising chain in this specific instance).
Casting FðtÞ into the form Eq. (5) makes it amenable to
a standard perturbative expansion in the interaction picture
with respect to the unperturbed (purely Hamiltonian)
Liouvillian H0, associated to the quantum dynamics of
the Ising model. Within this representation, we evolve
the density matrix, ρ̂IðtÞ ¼ eiĤ0tρ̂ð0Þe−iĤ0t, starting from
the critical ground state of the Ising chain, and we recast the
fidelity using ρ̂IðtÞ as the reference state,

FðtÞ ¼
�
ρIjT← exp

�
þ
Z

t

0

dsLIðsÞ
�
jρI

�
; ð6Þ

which can then be expanded in cumulants (see
Supplemental Material [47]),

FðtÞ ¼ exp

�
þ
Z

t

0

ds½LIðsÞ�C0

þ 1

2

Z
t

0

ds
Z

t

0

ds0½T←LIðsÞLIðs0Þ�C0 þ � � �
�
: ð7Þ

In Eq. (7), T← is the time ordering operator, LIðsÞ is the
Liouvillian perturbation with its Lindblad operators evolv-
ing under the Hamiltonian Ĥ0, we used ρ̂IðtÞ ¼ ρ̂ð0Þ for
the initial ground state, and the compact notation ð·Þ0 ≡
ðρ0j·jρ0Þ has been adopted. For a single, Hermitian dis-
sipative channel the first two cumulants read

½LIðsÞ�C0 ¼ −2ðhL̂2i0 − hL̂i20Þ;
½T←LIðsÞLIðs0Þ�C0 ¼ 4½jhT←L̂ðsÞL̂ðs0Þi0j2 − hL̂i40�: ð8Þ
In order to gain insight into the first two terms of the

cumulant expansion Eq. (8), we write them in terms of
connected correlation functions of spin operators,

½LIðsÞ�C0 ¼ −2κð1 − hσ̂zji20Þ; ð9Þ

½T←LIðsÞLIðs0Þ�C0
¼ 8hσ̂zji20ReGðs − s0Þ þ 4jGðs − s0Þj2; ð10Þ

where GðsÞ ¼ hσ̂zjðsÞσ̂zjð0Þi − hσ̂zji20. The first cumulant
Eq. (9) is constant, and when integrated over time yields
a term proportional to t: this is the exponential decay rate γ
in Eq. (4). γ is continuous close to the critical point g → 1,
where it has, however, a diverging derivative (see also
Fig. 2):

∂γ
∂g

����
g→1

¼ 8 − 2π

π2
κ log ðg − 1Þ: ð11Þ

This is a first imprint of criticality on the fidelity, although
similar features have also been found in the study of
decoherence induced on a two-level system coupled to a
one-dimensional quantum spin chain [48].
The second cumulant Eq. (10) contains, instead, the

characteristic features of the OC phenomenon; specifically,
the first contribution to Eq. (10) diverges logarithmically in
t after integration over the variables s and s0 [cf. Eq. (7)].
Collecting Eq. (9) and this leading contribution, we have
the following expression for the fidelity (see Supplemental
Material for details [47]):

FðtÞ ¼ exp

�
−γtþ κ2

Z
t

0

ds
Z

t

0

ds0ReGðs − s0Þ þ � � �
�

¼ exp

�
−γtþ 4κ2ð1 − 2nÞ2

Z
k;k0

Vðk; k0Þ

×
1 − cosðEk þ Ek0 Þt

ðEk þ Ek0 Þ2
þ � � �

�
: ð12Þ

In Eq. (12), Vðk; k0Þ ¼ sinð2θkÞ sinð2θk0 Þ þ
4cos2ðθkÞcos2ðθk0 Þ is the same matrix element found in
the second-order cumulant expansion of Ref. [29], with
2θk ¼ tg−1½sin k=ðg − cos kÞ�. This logarithmic divergence
is at the origin of the power-law character of Eq. (4), and it
can be understood by power counting [the denominator is
∝ðkþ k0Þ2, V is finite, and integration over momenta k,k0 is
carried out twice]. A double time integration over a term

FIG. 2. The rate of exponential decay γ and its derivative as a
function of the gap (g − 1) in the paramagnetic phase of the one-
dimensional quantum Ising chain subject to local spin dephasing.
Close to the critical point, g → 1, the latter (blue line) exhibits a
logarithmic divergence, while the former (red line) is continuous.
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∝Gðs − s0Þ appears also in the second cumulant calculation
of the Loschmidt echo in an isolated system, causing as
well a logarithmic divergence in time and accordingly the
typical algebraic scaling ∼t−θ0 [2,3,29,30]. The circum-
stance that the same quantity appears in the dissipative
setup considered in this work at the same level of cumulant
expansion confirms the physical intuition that also here
critical correlations are the genuine cause of algebraic
scaling. The same scaling argument shows that the term
∝jGðs − s0Þj2 from Eq. (10) is subleading with respect to
the terms appearing in Eq. (12).
We finally comment on the impact of the algebraic scaling

∝tþθ in FðtÞ [cf. Eq. (4)]. The fidelity is always monoton-
ically decreasing, as it should be for a system coupled to a
Markovian bath where there cannot be any revival of the
information originally present in the initial state. FðtÞ is
apparently increasing for times tJ ≲ θJ=γ ∝ κ=J, with
κ=J ≪ 1, the small parameter controlling the perturbative
cumulant expansion; however, the algebraic scaling is only
valid starting at times of the order t ∼ 1=J (as it occurs also in
OC for isolated systems [29]), and therefore no actual
growth occurs. Nevertheless, FðtÞ displays a distinct
feature compared to OC phenomena in closed systems:
the presence of a gapless mode provokes the scaling∝tθ and
decoherence is actually slowed down. Furthermore, the
fidelity at early times is concave, see Fig. 1, and becomes
convex at later times. The inflection point lies indeed at
t�J ¼ ð ffiffiffi

θ
p þ θÞ=γ, which is Oð1Þ even for κ=J ≪ 1. This

behavior is general in the sense that it depends only on the
long-time properties of the critical correlations of themodel,
and it constitutes a novelty of the dissipative scenario.
Other models.—We have tested the emergence of a

dissipative analogue of OC in other systems, ranging from
quantum spin chains with conserved local magnetization
(XX model) to the two-dimensional Bose-Hubbard model
with dephasing. We focused on the onset of the scaling term
∝ tþθ contributing to the fidelity, since aspects related to
monotonicity and concavity are based on the generic
structure of the perturbative cumulant expansion rather
than on specific details of the model at hand.
The simplest generalization of the previous setup

in one dimension is the XY spin chain [49] described
by the Hamiltonian ĤXY¼−ðJ=2ÞPif½ð1þΔÞ=2�σ̂xi σ̂xiþ1 þ
½ð1−ΔÞ=2�σ̂yi σ̂yiþ1þgσ̂zig, with a local dissipative impurity,
L̂ ¼ σzj. For generic Δ ≠ 0, analytical results can be
obtained from the cumulant expansion of the previous
section simply replacing sin k → Δ sin k. The latter sub-
stitution does not alter the infrared scaling of Eq. (12),
because the quasiparticle energy of the fermions diagonal-
izing HXY still has a linear infrared character as k → 0,
ϵk ∼ Δjkj, implying that the fidelity has an algebraic
scaling contribution also in this model. When Δ ¼ 0, the
Hamiltonian HXY describes an XX quantum spin chain
[40], which conserves the total transverse magnetization

(M̂z ∝
P

iσ̂
z
i ); the model is therefore equivalent to a system

of free fermions in one dimension at finite density, known
to undergo orthogonality catastrophe when coupled to a
local potential [2]. The dissipative analogue holds as well,
the main difference with the Ising case being that the
logarithmic divergence in Eq. (12) comes from modes close
to the Fermi surface, rather than from those close to k ¼ 0.
In passing, this circumstance highlights that criticality is
not a necessary condition for the onset of OC: the absence
of a gap in the spectrum is sufficient to induce the long-
range correlations that cause the algebraic scaling contri-
bution to the fidelity.
Finally, we have considered the Bose-Hubbard model

[40] in d spatial dimensions, HBH ¼ −J
P

hi;jib̂
†
i b̂j þ

ðU=2ÞPin̂iðn̂i − 1Þ, deep in the superfluid phase (where
excitations are gapless) and subject to a local heating
process described by L̂j ¼ n̂j, at rate κ; despite the fact that
model is not at the critical point, the absence of a gap is
sufficient to develop long-range correlations which make
the model potentially prone to OC. In the Hartree-Fock-
Bogolyubov approximation, the model reduces to a free
Hamiltonian of Bogolyubov quasiparticles; computations
follow the perturbative cumulant expansion Eq. (7) with the
additional complication that now L̂2 ≠ 1̂, which brings a
new term,

2Re½hT←L̂
2ðsÞL̂2ðs0Þi0 − hL̂2i20�; ð13Þ

in Eq. (10). Employing scaling arguments, one can show
that the phenomenon of dissipative OC exists only in
d ¼ 2, with a fidelity scaling as FBHðtÞ ∝ tΘe−Γt, where
Γ ∝ κn½1þOðnÞ�, Θ ∝ ðκ=JÞ2½1þ 4nþOðn2Þ� and n the
density of bosons in the superfluid ground state. In passing,
we notice that the interaction strength U determines the
time scales, t ≫ ðJUnÞ−1=2, for the onset of the scaling
form FBHðtÞ of the fidelity in the Bose-Hubbard model.
Conclusions and perspectives.—In summary, we have

shown that the decoherence following the sudden switch of
a dissipative impurity on a gapless quantum many-body
system is slowed down due to the critical, long-range
correlations persisting in the system. This phenomenon can
be interpreted as another manifestation of the Anderson
orthogonality catastrophe in the new context of driven-
dissipative systems, thanks to the analogy to the stochastic
quantum dynamics governed by the Hamiltonian Eq. (2). In
fact, the potential is localized for every realization of the
noise; hence, the transitions it can induce are suppressed in
the low-frequency part of the spectrum as result of conven-
tional orthogonality catastrophe physics. The correspond-
ing absorption processes are inhibited in this energy
window, and heating is therefore partially slowed, as
explicated by the occurrence of a power-law growth tθ

together with the typical exponential decay e−γt.
A natural point to address is the transient nature of the

phenomenon, i.e., whether dynamics is capable to exit the
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OC regime at longer times due to heating. Therefore, as a
future direction, we foresee a calculation of the fidelity for
dissipative impurities with nonperturbative or numerical
methods, in order to inspect whether its universal shape is a
precursor of a pure relaxational regime entirely dominated
by decoherence or whether it can persist for asymptotically
long times (as it might happen in the context of quantum
criticality in driven-dissipative platforms [50,51]).
A further option is represented by the extension of the

present study to the case of a non-Markovian impurity or,
equivalently, of a non-Markovian noisy transverse field
[see Eq. (2) above]. In this scenario, a nonmonotonic
behavior of the fidelity might be realizable due to the
backflow of information from the environment to the
system; accordingly, an intriguing possibility would be
the existence of a time window where an algebraic growth
is actually observable, unlike in the present case.
There is currently a research trend that aims at extending

traditional topics in statistical mechanics to the domain
of dissipative quantum many-body physics, as phase
transitions [52] or integrability [53–55]. Our work articu-
lates towards this direction; accordingly, a natural next
step to substantiate the concept of a dissipative orthogonality
catastrophe would consist in studying the response
of driven-open fermionic or bosonic gapless systems
[56–58] to local disturbances.
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