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We analyze quantum dynamics of strongly interacting, kinetically constrained many-body systems.
Motivated by recent experiments demonstrating surprising long-lived, periodic revivals after quantum
quenches in Rydberg atom arrays, we introduce a manifold of locally entangled spin states, representable by
low-bond dimension matrix product states, and derive equations of motion for them using the time-dependent
variational principle. We find that they feature isolated, unstable periodic orbits, which capture the recurrences
and represent nonergodic dynamical trajectories. Our results provide a theoretical framework for under-
standing quantum dynamics in a class of constrained spin models, which allow us to examine the recently
suggested explanation of “quantummany-body scarring” [Nat. Phys. 14, 745 (2018)], and establish a possible
connection to the corresponding phenomenon in chaotic single-particle systems.
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Introduction.—Understanding nonequilibrium dynamics
in closed quantum many-body systems is of fundamental
importance. In ergodic systems, the eigenstate thermal-
ization hypothesis (ETH) provides a means to describe their
late-time, steady-state behavior by equilibrium statistical
mechanics [1–5]. The few known exceptions to this
paradigm include exactly solvable, integrable systems
[6–8], and strongly disordered, many-body localized sys-
tems, which feature an extensive number of conservation
laws [9–12]. At the same time, the dynamics of equilibra-
tion and thermalization is not as well understood. Concepts
such as the ETH, while providing requirements for a system
to eventually relax, do not unambiguously prescribe the
mechanism nor the timescales on which this occurs;
interesting transient dynamics like prethermalization can
occur [6–8,13–21]. Such nonequilibrium phenomena are
generally challenging to analytically analyze and simulate,
and much progress has thus been spurred by quantum
simulation experiments in well-isolated, controllable many-
body systems [22–34].
Recently, experiments on Rydberg atom arrays demon-

strated surprising long-lived, periodic revivals after quan-
tum quenches [28], with strong dependence of equilibration
timescales on the initial state. Specifically, quenching
from some unentangled product states, quick relaxation,
and thermal equilibration of local observables were
observed, typical of a chaotic, ergodic many-body system.
Conversely, quenching from certain other product states,
coherent revivals with a well-defined period were instead
observed, which were not seen to decay on the exper-
imentally accessible timescales, a distinctively nonergodic
dynamical behavior. Most surprisingly, these strikingly
different behaviors resulted from initial states that are all

highly excited with similar, extensive energy densities,
and are hence indistinguishable from a thermodynamic
standpoint. The apparent simplicity of the special, slowly
thermalizing initial states’ dynamics—periodic, coherent
many-body oscillations—therefore brings to question
whether they can be understood in a simple, effective
picture. In fact, recent theoretical work [35] suggested an
intriguing analogy of the oscillations with the phenomenon
of quantum scarring in chaotic single-particle systems,
where a quantum particle shows similarly long-lived
periodic revivals when launched along weakly unstable,
periodic orbits of the underlying classical model [36].
However, to date, a firm connection to the theory of single-
particle quantum scars [36] has not been established.
In this Letter, we develop a theoretical framework to

analyze the quantum dynamics of a family of constrained
spin models, which display the similar phenomenology of
long-lived periodic revivals from certain special initial
states. Specifically, we introduce a manifold of simple,
locally entangled states respecting the constraints, repre-
sentable by a class of low bond dimension matrix product
states (MPSs), and derive equations of motion (EOM)
for them using the time-dependent variational principle
(TDVP) [37,38]. We find that these EOM support isolated,
unstable, periodic orbits. By quantifying the accuracy of
this effective description, we show that these closed orbits
indeed capture the persistent recurrences, and hence signal
slow relaxation of local observables, a form of weak
ergodicity breaking in dynamics, see Figs. 1(a) and 1(b).
Furthermore, since the TDVP generates a Hamiltonian flow
in the phase space parametrizing this (weakly entangled)
manifold, one can associate our approach with a general-
ized “semiclassical” description of many-body dynamics in
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constrained Hilbert spaces. Our finding of periodic orbits in
this description is therefore suggestive in establishing the
connection to the theory of quantum scarring of single-
particle systems of Heller [36].
Kinetically constrained spin models.—We consider a

family of interacting, constrained spin models and dem-
onstrate that they show atypical thermalization behavior for
certain initial states. Consider a chain of L spin-s particles
on a ring, with Hamiltonian

H ¼ Ω
X
i

PSxiP: ð1Þ

Here, a basis on each site i is spanned by eigenstates jnii of
Szi þ sIi, with n ¼ 0;…; 2s, and Sxi is the spin-s operator in
the x direction. The projector P ¼ Q

iPi;iþ1 is a product of
commuting local projectors Pi;iþ1¼ Ii⊗ Iiþ1−Qi⊗Qiþ1,
withQi ¼ Ii − Pi and Pi ¼ j0iih0ji, and constrains dynam-
ics to a subspace where at least one of two neighboring
spins is in the state j0i, which has dimensionality
d ∼ ½ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

8sþ 1
p Þ=2�L. When s ¼ 1=2, Eq. (1) effec-

tively models the experimental setup of Ref. [28], where
the constraint stems from the Rybderg blockade mecha-
nism (see also Refs. [40–44]).

The Hamiltonian Eq. (1) has a simple interpretation:
each spin rotates freely about the x axis if both its neighbors
are in the state j0i, while its dynamics is frozen otherwise.
Despite its apparent simplicity, the Hamiltonian is non-
integrable and quantum chaotic, as seen in Fig. 2(a) from
level repulsion in the energy eigenspectrum. The chaotic
nature of the system is expected to govern the nonequili-
brium dynamics arising from a quantum quench. For
example, consider “simple,” unentangled initial states,
specifically product states in the z basis that satisfy the
constraints. All these states have the property that they have
the same energy density under Eq. (1), corresponding to
that of the infinite-temperature thermal state, and are hence
thermodynamically indistinguishable. Under time evolu-
tion, one would expect a quick relaxation of local observ-
ables (on the timescale tr ∼ Ω−1) to infinite-temperature
ensemble values [39], in accordance with ETH predictions
[1–3,45–48]. This behavior is indeed observed generically,
as demonstrated previously [41–44], and also in Fig. 1(b)
for the local observable Szi ðtÞ from the initial state j0i ¼
⊗L

i¼1 j0ii (s ¼ 1=2). However, time evolution of the initial

state jZ2i≡ ⊗L=2
i¼1 j0i2i−1j2si2i does not follow this expect-

ation. As shown in Fig. 1(b), the same observable instead
unexpectedly exhibits long-lived, coherent oscillations with
a well-defined period T ≈ 2π × 1.51 Ω−1. Furthermore, it
does not relax to, nor oscillate about, the thermal value
expected from the ETH, at least on numerically accessible
timescales and system sizes.
This striking departure from generic behavior is also

reflected in the growth of entanglement entropy (EE)
[Figs. 2(b) and 2(c)]. While for generic initial states EE
essentially grows linearly and quickly saturates to that of a
random state [39], this is not the case for jZ2i. In particular,
the single-site EE drops periodically, indicating that each
spin is repeatedly partially disentangling itself from the rest
of the chain. This tantalizingly hints that the motion for the
jZ2i state lies within a low-entanglement manifold of the
Hilbert space, thereby possibly allowing for a simple,
effective description of dynamics.
Equations of motion from the TDVP.—Motivated by

these considerations, we analyze the dynamics of the
system using the TDVP on a suitable variational manifold
of simple, low entanglement states. For concreteness,
we focus first on s ¼ 1=2. Starting from classical spin
configurations, i.e., products of unentangled coherent states
⊗i jϑi;φii≔⊗i ½cosðϑi=2Þj0ii − ieiφi sinðϑi=2Þj1ii�, we
construct states that respect the constraints set by P, by
explicitly projecting out neighboring excitations,

jψðϑ;φÞi ¼ P⨂
i
jðϑi;φiÞi; ð2Þ

which is akin to a Gutzwiller projection to the constrained
subspace [39,51], see Fig. 3(b). Importantly, Eq. (2) is
weakly entangled, and can be written as a particular matrix

(a)

(b)

FIG. 1. (a) Flow diagrams of _θeðtÞ, _θoðtÞ for the model Eq. (1)
with s ¼ 1=2. The color map gives the error γ, Eq. (5). There is an
isolated, unstable periodic orbit (red curve) describing oscillatory
motion between jZ2i (green dot) and jZ0

2i (blue dot), with
numerically extracted period T ≈ 2π × 1.51 Ω−1. Conversely,
motion from j0i (red dot) proceeds towards a saddle point where
the error is large. (b) Dynamics of local observable Szi ðtÞ. There
are persistent, coherent oscillations in the local observable for
jZ2i with similar period, while j0i instead shows quick relaxation
and equilibration towards a thermal value predicted by ETH [39].
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product state (MPS) with bond dimension D ¼ 2 [39,52].
We find it convenient to normalize Eq. (2) and change to
new variables ðϑ;φÞ → ðθ;ϕÞ via a nonlinear mapping
[39], such that jψðϑ;φÞi=jjψðϑ;φÞjj ¼ jψðθ;ϕÞi, so that
the MPS representation is given by

jψðθ;ϕÞi ¼ TrðA1A2 � � �ALÞ;

Aiðθi;ϕiÞ ¼
�
Pijðθi;ϕiÞi Qijðθi;ϕiÞi

j0ii 0

�
; ð3Þ

and jðθi;ϕiÞi ¼ eiϕiseiϕiS
z
i e−iθiS

x
i j0ii, which is normalized

in the thermodynamic limit L → ∞ (see too Refs. [53,54]).
The generalization of Eq. (3) to spin s then simply consists
of replacing the appropriate operators and states with the
spin-s analogs.
The TDVP respects conservation laws, and in particular

conserves the energy of the Hamiltonian Eq. (1) [37–39,55].
On this general ground, we obtain that _ϕ ¼ 0, and can set
ϕ ¼ 0, which is obeyed for initial product states in the z
basis [39]. Furthermore, to describe the motions of the j0i
and jZ2i states, it suffices to focus on the submanifold of
states with a two-site translational symmetry, i.e., θi ¼ θiþ2.
The TDVP EOM are obtained by projecting the instanta-
neous motion of the quantum system onto the tangent
space of the variational manifold [Fig. 3(a)], and readP

μ
_θμh∂θνψ j∂θμψi ¼ −ih∂θνψ jHjψi, for μ ∈ fo; eg (stand-

ing for even (e) and odd (o) sites). A lengthy but
straightforward calculation [39] yields closed-form,
analytic expressions: _θeðtÞ ¼ f(θeðtÞ; θoðtÞ) and _θoðtÞ ¼
f(θoðtÞ; θeðtÞ), with

fðx; yÞ ¼ Ω
�
1 − cos4s−2

�
x
2

�
þ cos4s−2

�
x
2

�
cos2s

�
y
2

�

þ 2s sin
�
x
2

�
cos6s−1

�
x
2

�
tan

�
y
2

��
: ð4Þ

These EOM are coupled, nonlinear equations. Yet,
remarkably, we find that for each spin s, there is an isolated,
unstable, periodic orbit C, as seen in the corresponding
flow diagrams for s ¼ 1=2 in Fig. 1(a), and s ¼ 1, 2, in
Figs. 4(a) and 4(c). Furthermore, C includes the points
ðθe; θoÞ ¼ ðπ; 0Þ, and ð0;−πÞ (modulo 2π), corresponding
to jZ2i and its counterpart jZ0

2i ¼ ⊗L=2
i¼1 j0i2ij2si2i−1,

respectively. Thus, the EOM describe continual oscillations
between these two product states (akin to a quantum
Newton’s cradle [see also Ref. [22]]), which is manifestly
an athermal, nonergodic behavior [56]. The periods of
oscillations from the EOM can be determined by numerical
integration of Eq. (4), and the extracted values match
excellently with those from numerical simulations of local
observables such as Szi ðtÞ, see Figs. 1(b), 4(b), and 4(d).
This already indicates that the variational manifold Eq. (3) is
well suited to capture central aspects of the exact quantum
dynamics.
To further corroborate this fact, we quantify the error in

TDVP evolution as the instantaneous rate at which the state
evolving under the full Hamiltonian leaves the variational
manifold (see Fig. 3, [37,38]), given by

γðθÞ ¼ jjðiH þ _θ∂θÞjψðθÞijj=
ffiffiffiffi
L

p
; ð5Þ

where we have normalized it to be an intensive quantity.
The numerically integrated error rates around the closed
orbits ϵC ¼

H
C γ(θeðtÞ; θoðtÞ)dt yield ϵC ≈ 0.17, 0.32,0.41

(a) (b)

(c)

FIG. 2. (a) Level spacing statistics in the momentum-zero,
inversion-symmetric sector. Plotted is the r statistics defined by
the average of rn ¼ ½minðsn; sn−1Þ=maxðsn; sn−1Þ� where sn ¼
Enþ1 − En. There is a clear albeit slow trend with Hilbert space
dimension d towards Wigner-Dyson statistics in the Gaussian
Orthogonal Ensemble (GOE) class, indicated by r ≈ 0.53, away
from the integrable Poissonian (POI) limit of r ≈ 0.39 (for dis-
cussion of the slow convergence, see Refs. [49,50]). (b),(c) Growth
of entanglement entropy SA following quenches from the j0i and
jZ2i states, of subregions A being (b) six contiguous sites, (c) a
single-site, for the s ¼ 1=2 model. Total system size is L ¼ 30.

(a)

(b)

FIG. 3. (a) Geometrical depiction of the TDVP over a manifold
of states jψðzÞi parametrized by z. The instantaneous motion
−iHjψðzÞi is projected onto the tangent space at the point,
leading to motion on the manifold (green trajectory). The norm of
the vector orthogonal to the manifold, Γ ¼ γ

ffiffiffiffi
L

p
[cf. Eq. (5)], is

a measure of its accuracy. (b) MPS representation of states
jψðθ;ϕÞi [cf. Eq. (3)] used.
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for s ¼ 1=2, 1, 2 respectively, which are small values
compared to neighboring trajectories [39], illustrating that
C is indeed a good approximation to exact quantum
dynamics. We stress that the ability to capture the key
features of some dynamics of a chaotic many-body system
within a low entanglement manifold is remarkable. This
is in contrast to generic expectations; for example, the
trajectory beginning at ðθe; θoÞ ¼ ð0; 0Þ for s ¼ 1=2, (i.e.,
the j0i state), instead traces out a path that terminates in a
saddle point where γ is large [see Fig. 1(a)], indicating that
this low entanglement manifold is unable to capture the
large growth of entanglement from this state, as expected in
a thermalizing system.
Discussion.—Our effective description of the persistent

oscillations seen in the many-body systems, Eq. (1), in
terms of isolated, unstable orbits, provides a framework to
analyze a possible connection with the phenomenon of
quantum scarring in single-particle chaotic systems [36].
There, special, weakly unstable classical orbits of a single
particle, characterized by the condition λT < 1 (where
T is the period of the orbit and λ the average Lyapunov
exponent about the orbit) play a central role: the persistent
revivals and slow decay of a Gaussian wave packet (a
quantum particle) launched along such an orbit give rise
to a statistically significant enhancement of certain wave
function probability densities about these orbits, above
that expected of Berry’s conjecture [57]. Indeed, the
apparent similarity between these phenomena, and atypical

signatures in the ergodic properties of certain many-body
eigenstates of the s ¼ 1=2 model (1) tied to the long-lived
oscillations, motivated the recently proposed explanation
in terms of quantum many-body scars [35,50]. Our work
provides a way to make such an analogy firmer: even
though our variational manifold encompasses states that
explicitly include quantum entanglement, the TDVP EOM
describe a Hamiltonian flow in the corresponding phase
space [37,38,58,59], and thus offer a notion of a “semi-
classical trajectory” through the many-body Hilbert space.
A natural extension of the condition λT < 1 characterizing
the instability of orbits is then the leakage out of the
manifold ϵC ¼

H
C γðθÞdt < 1; it would be interesting to

relate this quantity to the Lyapunov exponent of the EOM
[59]. Furthermore, the effect of these orbits on the nature of
many-body eigenstates deserves further study; however,
this has to be done while contending with the thermody-
namic limit, a notion absent in the single-particle scenario.
Finally, we note that the equations of motion we obtained

can also be understood as the leading order, saddle-point
evaluation of a path integral for the constrained spin
systems [Eq. (1)]. In particular, the manifold of states
jψðθ;ϕÞi is dense and supports a resolution of the identity
on the constrained space, with an appropriate measure
μðθ;ϕÞ (see Ref. [39]), allowing the construction of a
Feynman path integral [58,60–63]. The TDVP EOM
extremize the action functional with the Lagrangian
L ¼ ihψ j∂θψi_θþ ihψ j∂ϕψi _ϕ − hψ jHjψi, which evaluates
(for s ¼ 1=2) to

L¼
X
i

KiðθÞ
�
sin2

�
θi
2

�
_ϕiþ

Ω
2
cos

�
θiþ1

2

�
sinðθiÞcosðϕiÞ

�
;

where KiðθÞ is given in Ref. [39]. This formulation
provides a framework, which can be used to systematically
recover quantum dynamics from the saddle-point limit, by
including higher-order corrections, i.e., fluctuations.
Conclusion.—In this Letter, we introduced and analyzed

the dynamics of a family of constrained spin models
which show atypical thermalization behavior—long-lived,
coherent revivals from certain special initial states, similar
to recent quench experiments in a quantum simulator of
Rydberg atoms. We derived an effective description of
these systems in terms of equations of motion for dynamics
of locally entangled spins and found that they host isolated,
unstable, periodic orbits, which correspond to long-lived
recurrences at the quantum many-body level. Our results
establish a possible connection to quantum scarring in
single-particle chaotic systems, and suggest a framework
for a generalization of the theory of quantum scars by
Heller [36], which is intimately tied to unstable periodic
orbits, to the many-body case.
While our analysis demonstrates that the phenomenol-

ogy of stable, long-lived oscillations from special initial
states extends to a number of interacting, constrained

(a) (b)

(c) (d)

FIG. 4. (a) and (c) Flow diagrams [Eq. (4)] and error γ for
(a) s ¼ 1, (c) s ¼ 2. The indicated periodic orbits (red curves)
have periods (a) T ≈ 2π × 1.64 Ω−1, and (c) T ≈ 2π × 1.73 Ω−1.
Note that points θo=e ¼ θo=e � 2π are identified. (b),(d) Relaxa-
tion of local observable Szi ðtÞ for (b) s ¼ 1, (d) s ¼ 2. One sees,
similarly to Fig. 1, quick relaxation of the j0i state toward a
thermal value predicted by ETH [39], while persistent oscillations
for jZ2i, with similar periods in (a),(c).
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models, one of the most important outstanding questions is
related to their physical origin and the sufficient conditions
for their existence. A complementary Letter [49] demon-
strates that these models possess important features resem-
bling ergodic systems that are close to integrability, and that
these features can be enhanced by nontrivial deformations
of the Hamiltonian. In Ref. [39], we show that our
variational description of the periodic dynamics is able
to capture the effect of these deformations by making the
corresponding error γ smaller. While it is currently unclear
if this near-integrable-like behavior is directly related to,
required for, or follows from the existence of scarlike
dynamics (see however recent work [64] exploring the role
of deformations on stabilizing the periodic dynamics),
these observations as well as the framework presented
here provide both theoretical foundations and important
physical insights on which future studies of quantum
dynamics can be based upon.
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