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A basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning,
namely, to efficiently perform computations in an intractably large Hilbert space. In this Letter we explore
some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum
machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear
feature map that maps data to quantum Hilbert space. A quantum computer can now analyze the input data
in this feature space. Based on this link, we discuss two approaches for building a quantum model for
classification. In the first approach, the quantum device estimates inner products of quantum states to
compute a classically intractable kernel. The kernel can be fed into any classical kernel method such as a
support vector machine. In the second approach, we use a variational quantum circuit as a linear model that
classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in
a continuous-variable system, and visualize the working principle with two-dimensional minibenchmark
datasets.
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Introduction.—A goal of most quantum algorithms is to
perform efficient computations in aHilbert space that grows
rapidly with the size of a quantum system. “Efficient”
means that the number of operations applied to the
system grows at most polynomially with the system size.
This is pushed to the extreme for continuous-variable
systems, where a single operation—for example, squeezing
applied to a mode of the electromagnetic field—formally
manipulates a quantum state in an infinite-dimensional
Hilbert space.
In machine learning, so-called kernel methods are

a well-established field with a surprisingly similar logic.
The idea of kernel methods is to formally embed data into a
higher-dimensional (and sometimes infinite-dimensional)
feature space in which it becomes easier to analyze.
A popular example is a support vector machine that
draws a decision boundary between two classes of data
points by mapping the data into a feature space where it
becomes linearly separable. The trick is that the algorithm
never explicitly performs computations with vectors in
feature space, but uses a so-called kernel function that is
defined on the domain of the original input data. Just like
quantum computing, kernel methods therefore perform
implicit computations in a possibly intractably large
Hilbert space through the efficient manipulation of data
vectors.
Besides this apparent link, kernel methods have hardly

been studied in the quantum machine learning literature, a
field that (in the definition we employ here) investigates the
use of quantum computing as a resource for machine
learning. Across the approaches in this young field, which
vary from sampling [1–5] to quantum optimization [6,7],

linear algebra solvers [8–10], and using quantum circuits as
trainable models for inference [11,12], a lot of attention has
been paid to recent trends in machine learning such as deep
learning and neural networks. Kernel methods, which were
most successful in the 1990s, are only mentioned in very
few references [9,13,14].
The aim of this Letter is to leverage the relationship

between feature maps, kernel methods, and quantum
computing. We interpret the process of encoding classical
information into a quantum state as a feature map which
maps data inputs into the Hilbert space of the quantum
system. This leads to two strategies of designing quantum
machine learning algorithms. First, we propose to use a
simple special-purpose quantum device to estimate inner
products of these quantum states, and feed the estimates as
a “quantum kernel” into classical kernel models. Second,
data can be directly analyzed in the “feature Hilbert space”
of quantum states, where simple classifiers such as linear
models gain enormous power. Both strategies give rise to
classically intractable hybrid quantum machine learning
algorithms with near-term quantum technology.
In the following, we will first present the general idea of

quantum feature maps and then highlight the resulting
quantum machine learning algorithms based on squeezing
in a continuous-variable quantum system.
Concepts from kernel theory.—In machine learning we

are typically given a dataset of inputs D ¼ fx1;…; xMg
from a certain input set X , and have to recognize patterns to
evaluate or produce previously unseen data. Kernel meth-
ods use a distance measure κðx; x0Þ—called a kernel—
between any two inputs x; x0 ∈ X in order to construct
models that capture the properties of a data distribution.
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Definition 1.—Let X be a nonempty set, called the
input set. A function κ∶X × X → C is called a kernel if
the Gram matrix K with entries Km;m0 ¼ κðxm; xm0 Þ is
positive semidefinite, in other words, if for any finite
subset fx1;…; xMg ⊆ X with M ≥ 2 and c1;…; cM ∈ C,P

M
m;m0¼1

cmc�m0κðxm; xm0 Þ ≥ 0.
Another way to define kernels is that they are inner

products in a feature space of the data [15]. A data point is
mapped to feature space by a feature map.
Definition 2.—Let F be a Hilbert space, called the

feature space, X an input set, and x a sample from the input
set. A feature map is a map ϕ∶X → F from inputs to
vectors in the Hilbert space. The vectors ϕðxÞ ∈ F are
called feature vectors.
The feature space is usually of much higher dimension

than the original space. If the feature map is a nonlinear
function, it changes the relative position between data
points, and a dataset can become a lot easier to classify in
feature space.
By definition of the inner product, every feature map

gives rise to a kernel.
Theorem 1.—Let ϕ: X → F be a feature map. The inner

product of two inputs mapped to feature space defines a
kernel via κðx; x0Þ ≔ hϕðxÞ;ϕðx0ÞiF , where h·; ·iF is the
inner product defined on F .
The connection between feature maps and kernels means

that every feature map corresponds to a distance measure in
input space by means of the inner product of feature vectors.
While a given kernel can be related to many different

feature spaces, kernel theory also defines a unique Hilbert
space associated with each kernel, the reproducing kernel
Hilbert space or RKHS [16,17] (for a definition see
Supplemental Material, Sec. I [18]). Since a feature map
gives rise to a kernel and a kernel gives rise to a reproducing
kernel Hilbert space, we can construct a unique reproducing
kernel Hilbert space for any given feature map.
Theorem 2.—Let ϕ: X → F be a feature map over an

input set X , giving rise to a complex kernel κðx; x0Þ ¼
hϕðxÞ;ϕðx0ÞiF . The corresponding reproducing kernel
Hilbert space has the form

Rκ ¼ ff∶X → Cj
fðxÞ ¼ hw;ϕðxÞiF ; ∀ x ∈ X ; w ∈ Fg: ð1Þ

The functions hw; ·i in the RKHS associated with feature
map ϕ can be interpreted as linear models, for which w ∈
F defines a hyperplane in feature space. If ϕðxÞ is
orthogonal to w, then x lies on the decision boundary,
whereas a positive [negative] inner product states that ϕðxÞ
lies on the left [right] side of the hyperplane.
In machine learning these rather formal concepts gain

relevance because of the representer theorem [28] (see
SupplementalMaterial, Sec. I [18]). The representer theorem
states that for a common family of machine learning

optimization problems over functions in an RKHS (such
as our linear models), the solution can be represented as an
expansion of kernel functions,

f�ðxÞ ¼
XM
m¼1

αmκðx; xmÞ: ð2Þ

Consequently, instead of explicitly optimizing over an
infinite-dimensional RKHS we can directly start with the
ansatz of Eq. (2) and solve the convex optimization problem
of finding the parameters αm. In short, linear models in the
RKHS are often equivalent to kernelized models in the
input space.
Quantum feature maps.—We will now build the bridge

to quantum computing. Assume we want to encode some
input x from an input set X into a quantum state that is
described by a vector jϕðxÞi and which lives in Hilbert
space F . This procedure of “input encoding” fulfills the
definition of a feature map ϕ: X → F , which we call a
quantum feature map here. According to Theorem 1 we can
derive a kernel κ from this feature map. By virtue of
Theorem 2, the kernel is the reproducing kernel of an
RKHSRκ as defined in Eq. (1). The functions inRκ are the
inner products of the “feature-mapped” input data and a
vector jwi ∈ F , which defines a linear model

fðx;wÞ ¼ hwjϕðxÞi: ð3Þ

Note that we use Dirac brackets h·j·i instead of the inner
product h·; ·i to signify that we are calculating inner
products in a quantum Hilbert space. Finally, the repre-
senter theorem guarantees that the minimizer minwCðw;DÞ
of common empirical risks (such as least squares) can be
expressed by Eq. (2). The simple idea of interpreting x →
jϕðxÞi as a feature map therefore allows us to make use of
the rich theory of kernel methods and gives rise to machine
learning models that can be expressed by inner products of
quantum states. Note that if the state jϕðxÞi has complex
amplitudes, we can always construct a real kernel by taking
the absolute square of the inner product. A more general
discussion about how to link quantum and kernel theory
can be found in the Supplemental Material, Sec. II [18].
From the perspective of quantum computing, a quantum

feature map x → jϕðxÞi corresponds to a state preparation
circuitUϕðxÞ that acts on a ground or vacuum state j0 � � � 0i
of a Hilbert space F as UϕðxÞj0 � � � 0i ¼ jϕðxÞi. We
will call UϕðxÞ the feature-embedding circuit. Examples
of common information encoding techniques and their
associated quantum feature maps can be found in the
Supplemental Material, Sec. III [18].
Building a quantum classifier.—Figure 1 shows two

different strategies of designing a quantum machine learn-
ing algorithm based on the preceding combination of
quantum computing and kernel theory. On the one hand,
we can use the quantum computer to estimate the inner
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products κðx; x0Þ ¼ hϕðxÞjϕðx0Þi from a kernel-dependent
model as in Eq. (2), which we call the implicit approach.
This strategy requires a quantum computer that can do two
things: implement UϕðxÞ for any x ∈ X and estimate inner
products between quantum states (for example using a
SWAP test routine). The computation of the model from
those kernel estimates, as well as the training algorithm is
left to a classical device. This is an excellent strategy in the
context of intermediate-term quantum technologies [29],
where we are interested in using a quantum computer only
for small routines of limited gate count, and compute as
much as possible on the classical hardware. Note that in the
long term, quantum computers could also be used to learn
the parameters αm by computing the inverse of the kernel
Gram matrix, which has been investigated in Refs. [9,30].
On the other hand one can bypass the representer

theorem and explicitly perform the classification in the
feature Hilbert space of the quantum system. We call this
the explicit approach. For example, this can mean to find a
state jwi that defines a model as in Eq. (3). To do so, we can
prepare jwi by a variational circuitW ¼ WðθÞ that depends
on trainable parameters θ. Quantum-classical hybrid training
[31,32] of θ can learn the optimal model jwðθÞi ¼ WðθÞj0i.
The ansatz we choose for the variational circuit defines the
space of possible models and can act as regularization (see
also [33]). Below, we will follow a slightly more general
strategy and compute a state WðθÞUϕj0 � � � 0i, from which
measurements determine the output of themodel. Depending
on the measurement, this is not necessarily a linear model in
feature Hilbert space.
Squeezing as a feature map.—In the remainder of this

work we explore these two approaches with a toy example.
We use the process of squeezing in continuous-variable
quantum systems as a feature map [34] (for an investigation
with coherent states instead, see also [13]). This leads to a
classically tractable kernel—thus facilitating the analysis—
that has to our knowledge not been studied in classical
machine learning.
Squeezing decreases the uncertainty for one observable

from a pair of commuting observables with a continuous
spectrum. The Hilbert space F of such a system can be
expressed as an infinite-dimensional Fock space with basis
fj0i; j1i;…g. The resulting quantum machine learning

algorithm is particularly suitable for photonic quantum
computers. However, the reader will not require special
knowledge in the field of CV quantum computing to follow
the analysis.
A squeezed vacuum state of the electromagnetic field is

defined as

jzi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðrÞp X∞

n¼0

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
2nn!

½−eiφ tanhðrÞ�nj2ni;

where fjnig denotes the Fock basis and z ¼ reiφ is the
complex squeezing factor with absolute value r and phase
φ. It will be useful to introduce the notation jzi ¼ jðr;φÞi.
We can interpret x → jϕðxÞi ¼ jðc; xÞi as a feature map
from a one-dimensional real input space x ∈ R to Fock
space. Here, c is a constant hyperparameter that determines
the strength of the squeezing, and x is associated with the
phase. Moreover, when given multidimensional inputs in a
dataset of vectors x ¼ ðx1;…; xNÞT ∈ RN , we can define
the joint state of N squeezed vacuum modes,

ϕ∶x → jðc; xÞi; ð4Þ

with jðc; xÞi ¼ jðc; x1Þi ⊗ � � � ⊗ jðc; xNÞi ∈ F , as a fea-
ture map, where F is now a multimode Fock space. We call
this feature map the squeezing feature map with phase
encoding.
The kernel

κðx; x0; cÞ ¼
YN
i¼1

hðc; xiÞjc; x0ii ð5Þ

with

hðc; xiÞjc; x0ii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sech c sech c

1 − eiðx0i−xiÞ tanh c tanh c

r
; ð6Þ

derived from this feature map [35] is easy to compute on a
classical computer. It is plotted in Fig. 2, where we see that
the hyperparameter c determines the variance of the kernel
function. Furthermore, the squeezing feature map has the
property of mapping data into a space where they become
linearly separable (for a proof see Supplemental Material,
Sec. IV [18]).

FIG. 1. Illustration of the two approaches to use quantum
feature maps for supervised learning. The implicit approach uses
the quantum device to evaluate the kernel function, while in the
explicit approach, the model is solely computed by the quantum
device.

FIG. 2. Shape of the squeezing kernel function κsqðx; x0Þ from
Eq. (5) for different squeezing strength hyperparameters c. The
input x is fixed at (0,0) and x0 is varied. The plots show the
interval ½−1; 1� on both horizontal axes.
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Implicit approach.—Remember that in the implicit
approach, we evaluate the kernel in Eq. (5) with a quantum
computer and feed it into a classical kernel method.
Instead of using a real quantum device, we exploit the
fact that the kernel can be efficiently computed classically,
and use it as a custom kernel in a support vector machine.
Figure 3 shows that such a model easily learns the decision
boundary of two-dimensional minibenchmark datasets.
While the results of these simulations show that the

principle works, a goal is to find more sophisticated
kernels. Although quantum computers could offer constant
speed advantages, they become indispensable if the
feature map circuit Uϕ together with the kernel κðx; x0Þ ¼
h0 � � � 0jU†

ϕðxÞUϕðx0Þj0 � � � 0i is classically intractable.
In continuous-variable quantum computing, so called
Gaussian gates (including squeezing) can be efficiently
simulated by a classical computer [36]. In order to do
something more interesting, one needs non-Gaussian ele-
ments to the circuit such as a cubic phase gate [37,38] or
photon number measurements [39]. An example [40] for a
feature map that is believed to be classically intractable is
an IQP [41] or CV-IQP [42] circuit.
It is an interesting open question which classically

intractable input embeddings lead to powerful kernels
for classical models such as support vector machines.
Explicit approach.—In the explicit approach defined

above, we use a variational circuit WðθÞ on top of the
feature map circuit to build a “Fock-space” classifier. For
our two-dimensional squeezing example, this can be done
as follows. We start with two vacuum modes j0i ⊗ j0i. To
classify a data input x ∈ R2, first map the input to a quantum

state jc; xi ¼ jc; x1i ⊗ jc; x2i by performing a squeezing
operation on each of the modes. Second, apply the varia-
tional circuitWðθÞ to jc; xi. Third, repeated photon number
measurements give us estimates of the probability pðn1; n2Þ
of measuring Fock state jn1; n2i. Interpret the normalized
probability pð2; 0Þ=½pð2; 0Þ þ pð0; 2Þ� as the probability
that the model predicts class y ¼ 0. The final label is the
class with the higher probability. We can interpret this circuit
in thegraphical representation of neural networks as shownat
the top in Fig. 4.
Since the data in F is linearly separable, there is a circuit

W for which we obtain 100% accuracy on the training set.
However, we realistically only have a limited circuit depth

FIG. 3. Decision boundary of a support vector machine with the
custom kernel from Eq. (5). The shaded areas show the decision
regions for class 0 (blue) and class 1 (red), and each plot shows
the rate of correct classifications on the training set or test set. The
first row plots three standard two-dimensional datasets: “circles,”
“moons,” and “blobs,” each with 150 test and 50 training
samples. The second row illustrates that increasing the squeezing
hyperparameter c changes the classification performance. Here,
we use a dataset of 500 training and 100 test samples. Training
was performed with Python’s scikit-learn SVC classifier using a
custom kernel which implements the overlap of Eq. (6).

(a)

(b)

FIG. 4. (a) Representation of the Fock-space classifier in
the graphical language of quantum neural networks. A vector
ðx1; x2ÞT from the input space X gets mapped into the feature
Hilbert spaceF which is the infinite-dimensional two-mode Fock
space of the quantum system. The variational circuit including
photon detection measurement reduces the “infinite hidden layer”
to two outputs. (b) The variational circuit WðθÞ consists of
repetitions of a gate layer described in the Supplemental Material,
Sec. V [18].

FIG. 5. Fock-space classifier presented in Fig. 4 and the text
for the moons dataset. The shaded areas show the probability
pðy ¼ 1Þ of predicting class 1. The model has been trained for
5000 steps with stochastic gradient descent of batch size 5, an
adaptive learning rate and a square-loss cost function with a
gentle l2 regularization applied to all weights. The loss drops
predominantly in the first 200 steps (left). The simulations were
performed with the Quantum Machine Learning Toolbox
(QMLT) application for the STRAWBERRYFIELDS software plat-
form [43].
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and number of parameters. We therefore need to find a
good ansatz for the variational circuit WðθÞ, so that the
model has enough flexibility to generalize. The ansatz we
choose consists of layers of universal continuous-variable
quantum gates and is further explained in the Supplemental
Material, Sec. V [18].
To show that the Fock-space classifier works in

principle, we plot the decision boundary for the moons
data in Fig. 5, using four repetitions of the layer in the
variational circuit, and 32 parameters in total. The
training loss shows that after about 200 iterations of a
stochastic gradient descent algorithm, the loss converges
to almost zero.
Conclusion.—In this Letter we use quantum circuits to

map data to quantum Hilbert spaces, which serve as feature
spaces for the data. We propose two strategies inspired
by kernel theory to find patterns in the data. First, by
estimating intractable quantum kernels on the quantum
device and feeding them into a classical kernel method.
Second, we can use quantum models based on variational
circuits to learn models that process the feature vectors.
These simple models gain power from “outsourcing” the
nonlinearity into the procedure of encoding inputs into a
quantum state, or the quantum feature map. We expect
that this combination of quantum computing and kernel
theory will help to design quantum machine learning
algorithms for near-term quantum devices which offer
potential quantum speedups.
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