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We establish the nonclassicality of continuous-variable states as a resource for quantum metrology.
Based on the quantum Fisher information of multimode quadratures, we introduce the metrological power
as a measure of nonclassicality with a concrete operational meaning of displacement sensitivity beyond
the classical limit. This measure belongs to the resource theory of nonclassicality, which is nonincreasing
under linear optical elements. Our Letter reveals that a single copy, highly nonclassical quantum state is
intrinsically advantageous when compared to multiple copies of a quantum state with moderate
nonclassicality. This suggests that metrological power is related to the degree of quantum macroscopicity.
Finally, we demonstrate that metrological resources useful for nonclassical displacement sensing tasks can
be always converted into a useful resource state for phase sensitivity beyond the classical limit.
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Recognizing the differences between classical and quan-
tum physics has changed our viewpoint of nature, while
developments in quantum information theory have shown
that these differences lead to quantum advantages in
informational tasks [1–7]. Nonclassicality can be defined
by the negativity of the Glauber-Sudarshan P representa-
tion in the context of light fields [8–10]. An N-mode
continuous-variable state ρ̂ can be represented as

ρ̂ ¼ 1

πN

Z
d2NαPρ̂ðαÞjαihαj;

where Pρ̂ðαÞ is the P function and the set of coherent states
forms an overcomplete basis jαi ¼⊗N

n¼1jαni in the corre-
sponding Hilbert space. As coherent states are considered
to be the most classical states among all pure states
[8,9,11,12], a nonclassical quantum state, which cannot
be represented as a statistical mixture of coherent states,
should contain negativity in its P function [10].
A diverse range of studies have been performed to

characterize nonclassicality [13–19], as well as its relation-
ship to entanglement [20–22] and quantum communica-
tions [23,24]. For the quantification of nonclassicality,
various approaches have been suggested, including dis-
tance-based measures [25,26], nonclassicality depth [27],
entanglement potential [21,22], characteristic function
methods [28], and operational approaches [29,30].
Recently, the nonclassicality based on the negativity
of the P function was investigated using the resource
theory of coherence [31]. The orthogonalization process
suggested in Ref. [31] successfully unifies the old notion
of nonclassicality [8–10] and the new concept of coher-
ence [32] in the coherent-state basis. Emerging from this

characterization is a resource theory of nonclassicality
based on linear optics, where the set of classical operations
are naturally chosen as linear optical operations. The
challenge is then to find a quantifier of nonclassicality
based on the resource theory that possesses a clear
operational significance, paralleling the developments in
the entanglement [33] and coherence [32,34] theories. It
has been found that, in metrological tasks, nonclassicality
rather than entanglement is a necessary resource to achieve
quantum advantages [35–37], while the operational mean-
ing of nonclassicality was very recently studied based on
the quadrature fluctuations in a similar vein [38,39].
In this Letter, we demonstrate that the nonclassicality of

a continuous-variable state is a quantifiable resource for
parameter estimation tasks. We show that the mean quad-
rature variance captures every pure-state nonclassicality,
and its convex roof construction is a strict measure of
nonclassicality. Extending this concept, we introduce the
metrological power to quantify nonclassical resources that
lead to quantum enhancement in displacement metrology,
given in the form of the quantum Fisher information (QFI).
We prove that this quantifier witnesses the negativity of the
P function and does not increase by linear optical oper-
ations, so that it belongs to the family of monotones within
the resource theory of nonclassicality. In addition, it is
shown that a collection of many small-size nonclassical
states cannot achieve a large degree of nonclassicality; this
is consistent with the notion of quantum macroscopicity
[40–42]. Interestingly, nonclassical resources for displace-
ment sensing can always be converted into a useful
resource for phase sensing tasks using linear optical
operations. Our Letter provides a concrete operational
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meaning for the nonclassicality of a continuous-variable
state as a potential resource for quantum metrology that can
be quantified by a computable measure.
Resource theory of nonclassicality.—We define a re-

source theory of nonclassicality based on Ref. [31].
Consider a linear optical unitary for the N-mode bosonic
system belonging to the Oð2NÞ rotation group of the
quadratures R̂ ≔ ðx̂1; p̂1;…; x̂N; p̂NÞT , in addition to the
displacement operation D̂nðαnÞ ¼ exp½αnâ†n − α�nân�. Such
a unitary transforms a multimode bosonic operator â†μ ≔P

N
n¼1 μnâ

†
n into â†μ0 þ⨁N

n¼1αn1n, where μ ≔ ðRe½μ1�;
Im½μ1�;Re½μ2�; Im½μ2�;…;Re½μN �; Im½μN �ÞT is a real 2N-
dimensional unit vector and αn1n corresponds to the
displacement on the nth mode. Consequently, a mutimode
quadrature operator can be defined as X̂μ≔ ðâμþ â†μÞ=

ffiffiffi
2

p ¼
R̂Tμ. Using linear optical unitary operations, we define a
linear optical map

ΦLðρ̂AÞ ≔ TrE½ÛLðρ̂A ⊗ σ̂EÞÛ†
L�;

where σ̂E is a classical state (see Fig. 1), as a free operation
since it maps every classical state into another classical
state. A selective linear operation can be defined by a set of
Kraus operators fK̂ig when there exists ÛL, classical
ancilla σ̂EE0 , and a set of orthogonal vectors fjiiE0g such
that TrE½ÛLðρ̂A ⊗ σ̂EE0 ÞÛ†

L� ¼
P

ipiρ̂
i
A ⊗ jiiE0 hij, where

piρ̂
i
A ≔ K̂iρ̂AK̂

†
i and pi ≔ TrðK̂iρ̂AK̂

†
i Þ. One might expect

that a complete set of classicality preserving maps could be
expressed in the form of dilations of a linear optical unitary
with classical ancilla, but this is not the case. We note that a
classicality preserving map Λ∶ρ̂ →

R ðd2α=πÞQρ̂ðαÞjαihαj,
where Qρ̂ðαÞ ¼ hαjρ̂jαi is the Husimi Q function, is not a
linear opticalmap [43] since it involves ametaplectic unitary
corresponding to two-mode squeezing [44]. Nevertheless, a
set of linear optical maps serves as an important class
of operations that can be relatively easily performed in
laboratories, compared to nonlinear operations such as
squeezing.
In this framework, nonclassicality for a pure state jψi can

be quantified by the mean quadrature variance

V̄ðjψiÞ ≔ 1

N

X2N
k¼1

Varðψ ; R̂ðkÞÞ; ð1Þ

where Varðψ ; ÔÞ ≔ hψ jÔ2jψi − hψ jÔjψi2 and R̂ðkÞ is the
kth element of R̂. It is important to note that V̄ ≥ 1, and the
equality holds if and only if the state is a coherent state. We
extend this measure to quantify the nonclassicality of a
mixed state by taking the convex roof

Qðρ̂Þ ≔ min
fpi;jψ iig

X
i

piV̄ðjψ iiÞ − 1; ð2Þ

where fpi; jψ iig is a pure-state decomposition of ρ̂. We
show that Q is a faithful measure of nonclassicality [31].
Theorem 1.—Q is a nonclassicality measure satisfying

the following conditions. (1) Qðρ̂Þ ¼ 0 if and only if ρ̂ is
classical. (2) (a) (Weak monotonicity) Qðρ̂Þ ≥ Q½ΦLðρ̂Þ�.
(b) (Strong monotonicity) Qðρ̂Þ ≥ P

ipiQðρ̂iÞ where pi ≔
TrðK̂†

i K̂iρ̂Þ and ρ̂i ≔ ðK̂iρ̂K̂
†
i Þ=pi. (3) (Convexity), i.e.,

QðPipiρ̂iÞ ≤
P

ipiQðρ̂iÞ.
We note that the value of nonclassicality is bounded by

Qðρ̂Þ ≤ 2ðn̄=NÞ, where n̄ ≔ Tr½PN
n¼1 â

†
nânρ̂� is the mean

photon number. The upper bound saturates in the case of
pure states if and only if hψ jR̂ðkÞjψi ¼ 0 for every k, a
condition which holds for, e.g., Fock states, cat states, or
squeezed coherent states. Another interesting point is that
NðV̄ − 1Þ is equivalent to the phase space macroscopicity
measure proposed in Ref. [45]. Thus, Q can be understood
as the convex roof extension of the macroscopicity measure
per mode.
Nonclassicality and metrological power.—We now

establish the relationship between the quadrature variance
and the displacement sensitivity. Suppose that we want
to estimate the parameter θ when a quantum state ρ̂ is
displaced into ρ̂θ;μ ¼ e−iθX̂μ ρ̂eiθX̂μ . In this case, a tight
bound for the variance of the estimator ðΔθÞ2μ by perform-
ing the optimal measurements on ρ̂θ;μ is given by the
quantum Cramér-Rao bound [46]

ðΔθÞ2μ ≥
1

IFðρ̂; X̂μÞ
¼ 1

μTFμ
: ð3Þ

The QFI can be calculated as IFðρ̂;X̂μÞ¼2
P

i;j½ðλi−λjÞ2=
λiþλj�jhijX̂μjjij2 by using the eigenvalue decomposition
ρ̂ ¼ P

iλijiihij, and F is the QFI matrix with real
symmetric 2N × 2N elements Fkl¼2

P
i;j½ðλi−λjÞ2=λiþλj�

hijR̂ðkÞjjihjjR̂ðlÞjii. For a pure state, four times the variance
is equal to the QFI, so that a large quadrature variance
directly implies high displacement sensitivity. The QFI has
been also studied to quantify multipartite entanglement
[47–49] and macroscopic quantum coherence [42,50–52].
From the observation that F=2 ¼ 1 for every coherent

state, ðΔθÞ2μ is lower bounded by 1=2 for any classical
state, so-called the standard quantum limit (SQL) for
displacement metrology. The pure-state nonclassicality
measure QðjψiÞ ¼ Tr½F�=ð4NÞ − 1 has the meaning ofFIG. 1. (a) Linear optical unitary and (b) linear optical map.
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the metrological advancement beyond the SQL, on average
over all possible values of μ. For a mixed state, however, it
is unknown if Q has a direct operational meaning in terms
of quantum metrology, while Tr½F� cannot fully capture
nonclassicality of a mixed state when some eigenvalues of
F are smaller than 2.
Nonetheless, we shall consider another quantifier of

nonclassicality, the “metrological power,” which has the
concrete operational meaning of the maximal metrological
advantage by performing a linear optical unitary with a
vacuum ancilla,

Mðρ̂Þ ≔ 1

2
max

σ̂¼ÛLðρ̂⊗j0ih0jÞÛ†
L

IFðσ̂; x̂1Þ − 1

¼ max

�
λmaxðFÞ

2
− 1; 0

�
; ð4Þ

where λmaxðFÞ is the maximum eigenvalue of F. This
quantifies the optimal sensitivity among all possible para-
metrizations since minμðΔθÞ2μ ¼ ½λmaxðFÞ�−1, together with
the fact that one can always find a linear optical unitary
operator ÛL such that Û†

Le
−iθX̂μÛL ¼ e−iθx̂1 , and displace-

ment operations do not change the quadrature QFI. We
show the following useful properties of M.
Theorem 2.—The metrological power M satisfies

the following properties: (1) M ≥ 0, and M ¼ 0 for
every classical state. For a pure state, M ¼ 0 if and only
if the state is a coherent state. (2) M is invariant under
linear optical unitaries ÛL and a monotone under linear
optical maps ΦL. (3) M is convex. (4) Mðρ̂A ⊗ σ̂BÞ ¼
max fMðρ̂AÞ;Mðσ̂BÞg.
The first property shows that every pure quantum state

except coherent states outperforms all classical states in
terms of the metrological power. For a mixed state, this
quantifier can witness nonclassicality whenever M > 0,
although there can exist nonclassical states havingM ¼ 0.
This is, however, offset by the computational advantages
and operational interpretation of M. The metrological
power also satisfies monotonicity and convexity, which
are necessary conditions for nonclassicality monotones.
The last property fulfills one of the proposed requirements
to quantify genuine quantum macroscopicity: the accumu-
lation microscopic quantum coherence should be distin-
guished from the genuine macroscopic coherence [40].
Similar quantum macroscopicity measures for optical

systems have been proposed [52–54] based on the QFI, for
instance, the quantity maxfϕngIFðρ̂; X̂fϕngÞ=N using the sum
of quadratures X̂fϕng ¼

P
N
n¼1½cosϕnx̂n þ sinϕnp̂n�. In this

case, however, we point out that a linear optical unitary can
increase the measure, since X̂fϕng in general does not

transform in a covariant way, i.e., Û†
LX̂fϕngÛL ≠ X̂fϕ0

ng.
Thus, measures of this type do not belong to nonclassicality
monotones, although they capture many useful properties

of quantum macroscopicity. It is worth noting that utili-
zing the quadrature QFI to characterize nonclassicality
was recently studied with a slightly different set of free
operations [38].
Examples.—We first observe that both the Fock

state jni and NOON state jnij0iþj0ijni give Q ¼ 2n̄=N
and M ¼ 2n̄. A cat state jαi � j − αi gives Q ¼ 2n̄ and
M ¼ 2ðn̄þ jαj2Þ, while a decohered cat state ρ̂Γ ¼
NΓ

−1½jαihαj þ j − αih−αj þ Γðjαih−αj þ j − αihαjÞ� gives
Mðρ̂ΓÞ¼maxf½16jαj2=N2

Γ�ΓðΓþe−2jαj2Þ;0g, where NΓ ¼
2þ 2Γe−2jαj2 . A decohered even cat state with positive Γ is
nonclassical unless Γ ¼ 0, while a decohered odd cat state
with negative Γ can be nonclassical whenM ¼ 0. Because
of invariance under linear optical unitary operations, non-
classicality between different modes can also be fairly
compared throughout our measure. For example,M for an
entangled coherent state jαijαi � j − αij − αi is equivalent
to a single-mode cat state with an amplitude

ffiffiffi
2

p
α since

they are interconvertible via a 50∶50 beam splitter. This
can be extended to a multimode entangled coherent state
jα1ijα2i � � � jαNi � j − α1ij − α2i � � � j − αNi, which is con-
vertible into ðjγi � j − γiÞj0i � � � j0i via beam splitter oper-
ations, where jγj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
n¼1 jαnj2

p
.

We apply our result to a multimode Gaussian state
characterized by its mean value d with dk ¼ Tr½ρ̂R̂ðkÞ�
and the covariance matrix V with Vkl¼Tr½ρ̂fR̂ðkÞ−dk;
R̂ðlÞ−dlg�, where fÂ; B̂g ≔ Â B̂þB̂ Â. The symplectic
transform of V and corresponding symplectic matrix
S then always exist. This allows us to decompose every
Gaussian state into single-mode squeezing combined
with linear optical operations acting on the product of
thermal states [55]. In this case, the following closed form
formula is obtained: M¼maxfλmax½S−1STV−1SðS−1ÞT �−
1;0g. Especially for a single-mode Gaussian state
D̂ðαÞŜðξÞτ̂Ŝ†ðξÞD̂†ðαÞwith ŜðξÞ¼exp½ðξâ†2−ξ�â2Þ=2� and
τ̂ ¼ P∞

n¼0 n̄
n
th=ð1þ n̄thÞðnþ1Þjnihnj, a direct relationship

between nonclassicality and squeezing [56] can be derived
as M ¼ e2GðVÞ − 1 ¼ max fexpð2jξjÞ=ð2n̄th þ 1Þ − 1; 0g,
where GðVÞ≔ inf ½−P

N
i¼1 logs

↓
i ðSÞjV ≥STS� with s↓i ðSÞ

being singular values of S in decreasing order. This
observation also leads to the following corollary.
Corollary.—The metrological power M is zero if and

only if a single-mode Gaussian state is classical.
Similar to the case of entangled coherent states, the

metrological power of two-mode and single-mode squeezed
states can be equivalently compared as they are intercon-
vertible by using the beam splitter. Figure 2 showsQ andM
for various types of quantum states.
Quantum phase estimation assisted by linear optical

unitaries.—We discuss how a nonclassical resource for the
displacement metrology can be utilized in phase estimation
tasks beyond the classical limit. Quantum phase estimation
aims to measure the relative phase of a chosen mode of a
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interferometer whose dynamics is given by e−iθâ
†âρ̂eiθâ

†â.
The sensitivity of the phase estimation task is bounded by
ðΔθÞ2phase ≥ IFðρ̂; â†âÞ−1. It was shown [29] that a non-
classical quantum state can be identified whenever the QFI
is larger than four times the mean photon number
IFðρ̂; â†âÞ > 4Tr½ρ̂â†â�, where the SQL for the phase
metrology can be considered as IFðρ̂; â†âÞ ≤ 4Tr½ρ̂â†â�.
Although this condition is useful to witness nonclassicality,
we highlight that it is not sufficient to detect every non-
classical pure state. For example, the Fock state jni is
obviously nonclassical for n > 0, but IFðjni; â†âÞ ¼ 0.
In order to overcome this problem, we optimize the

phase sensitivity over linear optical unitaries, analogously
to the displacement metrology. However, we should addi-
tionally take into account that displacement can increase
the phase estimation sensitivity even for classical states as
IFðjαi; â†âÞ ∝ jαj2 for a coherent state jαi ¼ D̂ðαÞj0i. It is
therefore necessary to characterize the linear optical uni-
taries according to the degree of displacement. This can
be done by decomposing a linear optical unitary into
Ûα

L ≔ ½⨂N
n¼1D̂nðαnÞ�Û0

L with jαj2 ¼ P
N
n¼1 jαnj2, and Û0

L
is a linear optical unitary without any displacement. We
then define the α-invested metrological power for phase
estimation as

Mα
phaseðρ̂Þ ≔ max

σ̂¼Ûα
Lðρ̂⊗j0ih0jÞÛα†

L

�
IFðσ̂; â†1â1Þ

4
− Tr½σ̂â†1â1�

�
;

ð5Þ

where Mα
phase ≥ Mβ

phase ≥ 0 for jαj ≥ jβj and Mα
phase ¼ 0

for every classical state; thus the phase sensitivity beyond
the SQL (Mα

phase > 0) directly captures the negativity in
the P distribution. Additionally, Mα

phase enjoys convexity

and is invariant under Û0
L. We demonstrate a remarkable

relationship between the displacement and phase metro-
logical powers.

Theorem 3.—Provided Mðρ̂Þ > 0, there exists a linear
optical unitary Ûα

L to reach the sensitivity beyond the SQL
for phase estimation, i.e., Mα

phaseðρ̂Þ > 0.
In particular,M≤ limjαj→∞½Mα

phase=jαj2�≤Mþ1 ([57],
see also the Supplemental Material [58]), which can be
intuitively understood by the fact that a large displacement
followed by a small rotation can be approximated by two
sequential displacement operations in orthogonal direc-
tions. Another important figure of merit for phase metrol-
ogy is the scaling behavior with the mean photon number n̄.
In phase estimation, the classical limit with coherent states
is Δθcl ∝ 1=

ffiffiffī
n

p
, while quantum states can achieve the

sensitivity of ΔθHS ∝ 1=n̄, referred to as Heisenberg-like
scaling (HS) [59]. In order to reach HS, the corresponding
QFI should scale quadratically with n̄. The following
Theorem demonstrates that high nonclassicality in dis-
placement sensing is sufficient to achieve HS.
Theorem 4.—If Mðρ̂Þ ∝ n̄ρ̂, there exists σ̂ ¼ Ûα

Lðρ̂ ⊗
j0ih0jÞÛα†

L such that IFðσ̂; â†1â1Þ ∝ n̄2σ̂. More precisely,
HS can be achieved if and only if Mðρ̂0Þ ∝ n̄ρ̂0 or

M0
phaseðρ̂0Þ ∝ n̄kρ̂0 with k ≥ 2, where ρ̂0 ¼ V̂Lρ̂V̂

†
L is the

state centered in phase space (Trρ̂0R̂ ¼ 0) by acting the
linear optical unitary V̂L on ρ̂. Here, n̄σ̂ is the mean photon
number of a quantum state σ̂.
We note that the Fock state and cat state cannot reach

HS via only linear interferometers without additional
displacement. However, Theorem 4 guarantees that an
appropriate displacement operation will allow the system
to reach HS. According to Theorems 3 and 4, a nonclassical
resource for displacement sensing always implies the
quantum enhancement of phase sensing. However, it is
unclear at this point whether (1) negative P function of a
mixed state always implies quantum enhancement in phase
sensing and whether (2) nonclassical phase sensing implies
nonclassical displacement sensing (see Fig. 3). These two
statements are incompatible, thus both cannot be simulta-
neously true, but both can be false.
Remarks.—We have identified nonclassicality of con-

tinuous-variable states as a quantifiable resource for quan-
tum metrology. We have shown that any pure state with
negativity in the P function provides metrological enhance-
ment over all classical states in displacement estimation
tasks, and so does every single-mode Gaussian state. This
metrological power is found to be a measure of non-
classicality based on a quantum resource theory that does
not increase under linear optical elements. It is demon-
strated that every state displaying metrological enhance-
ment in displacement sensing can be converted into
nonclassical phase sensitivity by utilizing a linear optical
unitary.
The metrological power also satisfies the necessary

conditions for a valid measure of quantum macroscopicity.
Our study provides a possible avenue to a unified under-
standing of nonclassicality, quantum macroscopicity, and

(a) (b)

FIG. 2. (a) Nonclassicality measure Q achieves the maximum
value (solid line) for NOON, cat, squeezed, and Fock states. Also,
superposition between Fock state and coherent state jni þ jαi
with n ¼ jαj2 (dotted line), squeezed coherent states ŜðξÞjαi for
ξ ¼ 1 (dot-dashed line), and photon-added coherent states â†jαi
(dashed line) are evaluated. (b) Metrological power M for
decohered cat states ρ̂Γ (solid lines) and squeezed thermal states
ŜðξÞτ̂Ŝ†ðξÞ (dashed lines) with the parameters Γ ¼ 0.01, 0.3, 0.7
and n̄th ¼ 0.01, 0.1, 0.5, 1.0 (both starting from above).
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themetrological usefulness in the framework of the quantum
resource theory. Our measures could possibly be applied not
only to multimode bosonic systems, but also to other many-
body systems, including spin, atomic, and optomechanical
systems. In these systems, a more general notion of coherent
states [60,61] and the metrological usefulness with non-
classical states [62,63] can be considered. This may lead to a
unified description of nonclassicality for both discrete and
continuous systems.
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