
 

Ancilla-Free Quantum Error Correction Codes for Quantum Metrology

David Layden,1,*,‡ Sisi Zhou,2,3,†,‡ Paola Cappellaro,1 and Liang Jiang2,3
1Research Laboratory of Electronics and Department of Nuclear Science and Engineering,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA

3Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA

(Received 5 November 2018; published 30 January 2019)

Quantum error correction has recently emerged as a tool to enhance quantum sensing under Markovian
noise. It works by correcting errors in a sensor while letting a signal imprint on the logical state. This
approach typically requires a specialized error-correcting code, as most existing codes correct away both
the dominant errors and the signal. To date, however, few such specialized codes are known, among which
most require noiseless, controllable ancillas. We show here that such ancillas are not needed when the
signal Hamiltonian and the error operators commute, a common limiting type of decoherence in quantum
sensors. We give a semidefinite program for finding optimal ancilla-free sensing codes in general, as well as
closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic
mode. Finally, we analyze the sensitivity enhancement offered by the qubit code under arbitrary spatial
noise correlations, beyond the ideal limit of orthogonal signal and noise operators.
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Quantum systems can make very effective sensors,
but as with most quantum technologies, their performance
is limited by decoherence. Typically, a quantum sensor
acquires a signal as a relative phase between two states in
coherent superposition [1–3]. Its sensitivity therefore
depends on how quickly this phase accumulates, and
how long the superposition remains coherent. The funda-
mental strategy to enhance sensitivity is then to increase the
rate of signal acquisition (e.g., with entanglement) without
equally reducing the coherence time [4]. These competing
demands pose a familiar dilemma in quantum engineering:
a quantum sensor must couple strongly to its environment
without being rapidly decohered by it.
Quantum error correction (QEC) has recently emerged as a

promising tool to this end. It is effective with dc signals and
Markovian decoherence, important settings beyond the reach
of dynamical decoupling, a widely used tool with the same
goal [3,5,6]. The typical QEC sensing scheme involves
preparing a superposition of logical states, and periodically
performing a recovery operation (i.e., error detection and
correction). This allows a signal to accumulate as a relative
phase at the logical level, while extending the duration of
coherent sensing. To enhance sensitivity, however, great care
must be taken in designing a QEC code which corrects the
noise but not the signal. This new constraint is unique to error-
corrected quantum sensing, with no analog in quantum
computing or communication. Indeed, most QEC codes
developed for those applications do not satisfy the above
constraint, and cannot be used for sensing.
Recent works have begun to reveal how—and when—

new QEC codes could enhance quantum sensing. Initial

schemes [7–12] assumed a signal and a noise source
coupled to a sensor in orthogonal directions (e.g., σz
and σx). A two-qubit code utilizing one probing qubit and
one noiseless ancilla could restore unitary evolution
asymptotically (that is, for recoveries performed with
sufficiently high frequency) [7–9]. References [13–15]
generalized these results, showing that given access to
noiseless ancillas, one can find a QEC code for quantum
sensing, provided the sensor’s Hamiltonian is outside the
so-called “Lindblad span.” (Intuitively, the Hamiltonian-
not-in-Lindblad-span, or HNLS, condition means that the
signal is not generated solely by the same Lindblad error
operators one seeks to correct.) Reference [16] adapted this
result to qubits with signal and noise in the same direction,
and found numerical evidence that noiseless ancillas were
unnecessary in this common experimental scenario.
Noiseless, controllable ancillas are seldom available in

experiment. While they have often been assumed in
constructing QEC codes for sensing, little is known to
date as to whether they are truly necessary, beyond limited
counterexamples [10–12,16]. Similarly, Refs. [15,16]
showed, through perturbative arguments, that QEC can
still enhance sensitivity even when the HNLS condition is
not exactly met, but the exact sensitivity attainable is
unknown. Here we address both of these open questions.
First, we give a sufficient condition for error-corrected
quantum sensing without noiseless ancillas, and a corre-
sponding method to construct optimal QEC codes. We then
present new explicit codes for two archetypal settings:
qubits undergoing dephasing, and a lossy bosonic mode.
Finally, we introduce a QEC recovery adapted for the
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former code, and give an exact expression for the achiev-
able sensitivity outside the HNLS limit.
QEC for sensing.—We consider a finite d-dimensional

sensor under Markovian noise, whose dynamics is given by
a master equation [17–19]

dρ
dt

¼ LðρÞ ¼ −i½ωH; ρ� þ
X
i

�
LiρL

†
i −

1

2
fL†

i Li; ρg
�
;

ð1Þ

where ωH is the Hamiltonian from which ω is to be
estimated, and fLig are the Lindblad operators describing
the noise. The Lindblad span associated with Eq. (1) is
S ¼ spanfI; Li; L

†
i ; L

†
i Lj; ∀ i; jg, where spanf·g de-

notes the real linear subspace of Hermitian operators
spanned by f·g. One can use noiseless ancillas to construct
a QEC code, described by the projector P ¼ j0Lih0Lj þ
j1Lih1Lj onto the code space, which asymptotically restores
the unitary dynamics with nonvanishing signal

dρ
dt

¼ −i½ωHeff ; ρ�; ð2Þ

where Heff ¼ PHP∝P, if and only if the HNLS condition
is satisfied (H ∉ S) [15]. To go beyond this result, we want
to find conditions for QEC sensing codes that do not require
noiseless ancillas, but still reach the same optimal sensitivity,
as quantified by the quantum Fisher information (QFI).
According to the quantum Cramér-Rao bound [20–23], the
standard deviation δω of the ω estimator is bounded by
δω ≥ ½NexpFðtÞ�−1=2, where Nexp is the number of experi-
ments and FðtÞ is the QFI as a function of the final quantum
state. The bound is asymptotically achievable as Nexp goes
to infinity [23–25]. For a pure state jψi evolving under
Hamiltonian ωH, FðtÞ ¼ 4t2ðhψ jH2jψi − hψ jHjψi2Þ.
δω ∝ 1=t is the so-called Heisenberg limit in time—the
optimal scaling with respect to the probing time t [1–3]. The
optimal asymptotic QFI provided by the error-corrected
sensing protocol in Ref. [15], maximized over all possible
QEC codes, is given by

FoptðtÞ ¼ 4t2min
S∈S

kH − Sk2 ≡ 4t2kH −Sk2; ð3Þ

where k · k is the operator norm.
Commuting noise.—We address here the following open

questions: (i) Under what conditions the noiseless sensing
dynamics in Eq. (2) can be achieved with an ancilla-free
QEC code. (ii) Whether such code can achieve the same
optimal QFI in Eq. (3). We give a partial answer to these
questions in terms of a sufficient condition on the signal
Hamiltonian and the Lindblad jump operators.
Theorem 1.—(Commuting noise) Suppose H ∉ S and

½H;Li� ¼ ½Li; Lj� ¼ 0, ∀ i; j. Then there exists a QEC
sensing code without noiseless ancilla that asymptotically

recovers the Heisenberg limit in t. Moreover, it achieves the
same optimal asymptotic QFI [Eq. (3)] offered by noiseless
ancillas.
Proof.—A QEC sensing code recovering Eq. (2) should

satisfy the following three conditions [15]:

PHP∝P; ð4Þ

PLiP ∝ P; PL†
i LjP ∝ P; ð5Þ

Equation (5) is exactly the Knill-Laflamme condition to the
lowest order in time evolution [26–29] and Eq. (4) is an
additional requirement that the signal should not vanish in
the code space. We say the code corrects the Lindblad
span S if Eq. (5) satisfied. Without loss of generality,
we consider only a two-dimensional code j0ð1ÞLi ¼P

d
k¼1

ffiffiffiffiffiffiffiffiffi
β0ð1Þk

q
jki, where fjkigdk¼1 is an orthonormal basis

under whichH and Li’s are diagonal. Define d-dimensional
vectors 1, h, li and lij such that ð1Þk ¼ 1, ðhÞk ¼ hkjHjki,
ðliÞk ¼ hkjLijki, and ðlijÞk ¼ hkjL†

i Ljjki. Define the real
subspace Sdiag ¼ spanf1;Re½li�; Im½li�;Re½lij�; Im½lij�;
∀ i; jg ⊆ Rd. The optimal code can be identified from
the optimal solution β̃ ¼ β̃0 − β̃1 of the following semi-
definite program (SDP) [30],

maximize hβ; hi ð6Þ

subject tokβk1≤2; and hβ;li¼0; ∀ l∈ Sdiag: ð7Þ

Here kxk1 ¼
P

d
i¼1 jxij is the one-norm in Rd and hx; yi ¼P

d
i¼1 xiyi the inner product. Choosing the optimal input

quantum state jψ0i ¼ ð1= ffiffiffi
2

p Þðj0Li þ j1LiÞ, the QFI is
FðtÞ ¼ t2jhβ0 − β1; hij2. Moreover, the optimal value of
Eq. (6) is 2minl∈Sdiag

khþ lk∞ with the argument of the
minimum denoted by l⋄. Here k · k∞ denotes the infinity or
max norm, defined as the largest absolute value of elements
in a vector. The optimal solution β̃0ð1Þ can be obtained from
the constraint that it is in the span of vectors v such that
hv; hþ l⋄i is the largest (smallest) [30]. In this case,
FðtÞ ¼ 4t2kh −Sdiagk2∞ is the same as Fopt in Eq. (3) for

noiseless ancilla. Therefore, we conclude that β̃0ð1Þ gives
the optimal code. ▪
Theorem 1 reveals that the need for noiseless ancillas

arises from the noncommuting nature of the Hamiltonian
and Lindblad operators. Indeed, we can find a nontrivial
example with ½H;Li� ≠ 0 for which there exist no ancilla-
free QEC codes—even for arbitrarily large d (see
Supplemental Material [31]). Another interesting feature
of commuting noise is that it allows quantum error
correction to be performed with a lower frequency, by
analyzing the evolution in the interaction picture [31].
We now consider two explicit, archetypal examples

of quantum sensors dominated by commuting noise.
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In principle, a QEC code for each example could be found
numerically through Theorem 1. Instead, we introduce two
near-optimal, closed-form codes which are customized to
the application and the errors at hand.
Correlated dephasing noise.—A common sensing sce-

nario involves a quantum sensor composed of N probing
qubits with energy gaps proportional to ω [3]. For such a
sensor to be effective, the qubits’ energy gaps must depend
strongly on ω, which in turn makes them vulnerable to
rapid dephasing due to fluctuations in their energies from a
noisy environment [36–41]. Assuming for simplicity that
each qubit has the same dephasing time T2, the generic
Markovian dynamics for the sensor is

dρ
dt

¼ −i½ωH; ρ� þ 1

2T2

XN
j;k¼1

cjk

�
ZjρZk −

1

2
fZjZk; ρg

�
:

ð8Þ

Here, H ¼ 1
2
h · Z, where Z ¼ ðZ1;…; ZNÞ, so qubit j has

an energy gap ωhj. The correlation matrix C ¼ ðcjkÞNj;k¼1

describing the spatial structure of the noise can be quite
general, e.g., depending on their coupling to a nearby
fluctuator or a common resonator. In particular, cjk ∈
½−1; 1� describes the correlation between the fluctuations
on qubits j and k, with cjk ¼ 1, −1, and 0 signifying full
positive, full negative, and the absence of correlations,
respectively.
Equation (8) can be converted to the form of Eq. (1) by

diagonalizing C (Cvj ¼ λjvj) with an orthonormal eigen-
basis. Concretely, Lj ¼

ffiffiffiffi
λj

p
vj · Z can be viewed as normal

modes of the phase noise. The HNLS condition then
translates to h ∉ colðCÞ, the column space of C, which
occurs when one normal mode u overlapping with H (i.e.,
vu · h ≠ 0) has a vanishing amplitude, λu ¼ 0. This occurs
generically in the limit of strong spatial noise correlations,
provided the noise is not uniformly global [16]. Observe
that ½H;Lj� ¼ ½Lj; Lk� ¼ 0 here, so Theorem 1 guarantees a
QEC code without noiseless ancillas saturating the optimal
bound in Eq. (3). One such code, for N ≥ 3, is given by

j0Li ¼ ⊗
N

j¼1
ðcos θjj0ji þ i sin θjj1jiÞ; j1Li ¼ X⊗N j0Li;

ð9Þ

where θ ¼ 1
2
arccosb⋄, defined elementwise, and b⋄ is the

solution of the following SDP:

maximize hb;hi; subject to kbk∞ ≤ 1;b⊥colðCÞ:
ð10Þ

It is straightforward to show that the code in Eq. (9), with
this choice of b⋄, satisfies the QEC sensing conditions

(4)–(5). It works by correcting all nonvanishing noise
modes, but leaving a vanishing mode with the maximum
overlap with H uncorrected, through which H affects the
logical state. Moreover, it achieves the optimal asymptotic
QFI Eq. (3); in this case [31]

FoptðtÞ ¼ t2kh − colðCÞk21: ð11Þ

Note that since signal and noise are both along σz on each
qubit, the usual repetition code [42] is not suitable for
sensing as it also corrects the signal Hamiltonian H.
Remarkably, while the domain of the SDP in Eqs. (6)–(7)
has dimension Oð2NÞ, that of Eq. (10) only has dimension
OðNÞ: our ansatz in Eq. (9) renders the QEC code opti-
mization efficient. An approximate solution to Eq. (10) is
b̃⋄ ¼ γprojkerðCÞh, where γ is an adjustable parameter in the
range ½−γmax; γmax�nf0g, γmax ¼ kprojkerðCÞhk−1∞ . The code

using θ ¼ 1
2
arccos b̃⋄ always satisfies the QEC sensing

conditions exactly [Eqs. (4) and (5)], although it needs
not saturate the optimal QFI in Eq. (11). In the important
case of a single vanishing noise mode [i.e., nullityðCÞ ¼ 1],
however, b̃⋄ achieves the optimal QFI at γmax.
Lossy bosonic channel.—Boson loss is often the dom-

inant decoherence mechanism in a bosonic mode [43],
described by the master equation

dρ
dt

¼ −i
�Xs
i¼1

ζiða†aÞi; ρ
�
þ κ

�
aρa† −

1

2
fa†a; ρg

�
; ð12Þ

where a is the annihilation operator and κ the boson loss
rate. We only consider Hamiltonians that are a function of
the boson number a†a, applying a cutoff at the sth power,
where s > 1 is a positive integer. We also truncate the
boson number at M, to keep the system dimension finite.
According to the HNLS condition, while ζ1 cannot be
sensed at the Heisenberg limit, ω ≔ ζs asymptotically can,
with the optimal code for s ¼ 2 provided in Ref. [15].
To sense ω, it is important to filter out all lower-order

signals
P

s−1
i¼1 ζiða†aÞi using the QEC code. Therefore, we

should use the following modified Lindblad span [31]:

S ¼ spanfI; a; a†; ða†aÞi; 1 ≤ i ≤ s − 1g: ð13Þ

Note that the boson loss noise is not commuting because
½a; ða†aÞi� ≠ 0. Still, this type of off-diagonal noise can be
tackled by simply ensuring the distance of the supports
(nonvanishing terms) of j0Li and j1Li is at least 3.
To obtain the optimal code, we could solve the SDP in

Eqs. (6) and (7). However, whenM is sufficiently large, we
obtain a near-optimal solution analytically by observing
that for large M, minimizing kða†aÞs −P

s−1
i¼0 χiða†aÞik

over all fχigs−1i¼0 is equivalent to approximating an sth
degree polynomial using an (s − 1)-degree polynomial.
The optimal polynomial is the Chebyshev polynomial [44]
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and the near-optimal code, that we call the sth order
Chebyshev code, is supported by its max or min points:

j0ð1ÞLi ¼
X½0;s�

k evenðoddÞ
c̃kjbMsin2ðkπ=2sÞci; ð14Þ

where bxc denotes the largest integer ≤ x, and jc̃kj2 can be
obtained from solving a linear system of equations of size
Oðs2Þ. jc̃kj2 is approximately equal to ð2=sÞ − ð1=sÞδks −
ð1=sÞδk0 for sufficiently largeM. (Detailed calculations are
in Ref. [31].)
In quantum sensing, the sth order Chebyshev code

corrects the Lindblad span [Eq. (13)] and provides a near
optimal asymptotic QFI for ω

FðtÞ ≈ FoptðtÞ ≈ 16t2
�
M
4

�
2s
; ð15Þ

for sufficiently large M. Note that the [s − 1, ðM=sÞ − 1]
binomial code [45] also corrects Eq. (13), but it gives a QFI
that is exponentially smaller than the optimal value by
Oðsð2=eÞ2sÞ for sufficiently large M.
Enhancing sensitivity beyond HNLS.—Previous works

have focusedon regimeswhere theHNLScondition is exactly
satisfied. However, QEC can still enhance quantum sensing
well beyond this ideal scenario, even if the sensor’s encoded
dynamics is not unitary (even asymptotically for Δt → 0).
Indeed, decoherence at the logical level can often be made
weaker than at the physical level—while still maintaining
signal—giving a net enhancement in sensitivity.
To show how, we generalize the dephasing qubits

example to this more realistic setting. When HNLS is
satisfied, the code in Eq. (9) corrects noise modes with
nonzero amplitude λj > 0, but leaves a mode with λu ¼ 0

uncorrected. In experiments, the noise correlation matrix C
is generically full rank, meaning that the HNLS condition is
not satisfied. Yet, nontrivial noise correlations will gen-
erally cause C to have a nonuniform spectrum, yielding
some subdominant eigenvalues and corresponding Lj’s. It
is thus possible to design a code that still accumulates
signal at the cost of leaving uncorrected just one subdomi-
nant noise mode (λu ≈ 0) through an appropriate choice of
θ in Eq. (9). To reach a closed-form expression for the
resulting sensitivity, we use b̃⋄ as a starting point rather
than an SDP formulation, setting

θ ¼ 1

2
arccosðγvuÞ; ð16Þ

defined elementwise, where jγj ∈ ð0; γmax� is again adjust-
able, now with γmax ¼ kvuk−1∞ .
The natural figure of merit for a sensor with uncorrected

noise is not the Fisher information: decoherence eventually
causes FðtÞ to decrease, rather than grow unbounded as in
Eq. (3). Instead, it is sensitivity, defined as the smallest

resolvable signal per unit time [3]. For a single qubit with
an energy gap Aω and dephasing time T2=B, the best
achievable sensitivity is [16]

η ¼ min
t>0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
FðtÞ=tp ¼

ffiffiffiffi
B

p

A

ffiffiffiffiffi
2e
T2

s
: ð17Þ

Taking hj ¼ 1 in Eq. (8), each physical qubit (A ¼ B ¼ 1)

gives η1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2e=T2

p
. N such qubits operated in parallel

give ηpar ¼ η1=
ffiffiffiffi
N

p
, while for entangled states one could

reach A ¼ N, often at the cost of an increased B. For
example, a Greenberger-Horne-Zeilinger (GHZ) sensing
scheme with the same N qubits gives

ηGHZ ¼ kD1=2
C V⊤hk2
N

ffiffiffiffiffi
2e
T2

s
; ð18Þ

where V ¼ ðv1;…; vNÞ and DC ¼ diagðλ1;…; λNÞ [46].
Note that for uncorrelated noise we have kD1=2

C V⊤hk2 ¼ffiffiffiffi
N

p
, thus negating any gains from entanglement.

To find the sensitivity offered by the QEC code described
above, we compute the sensor’s effective Liouvillian,
Leff ¼ R∘L∘P, under frequent recoveries R, where
PðρÞ ¼ PρP [16]. The usual QEC recovery (i.e., the
transpose channel) results in population leakage out of
the codespace due to the uncorrected error Lu, even when
Δt → 0, which complicates the analysis [28,47]. To prevent
such leakage at leading order in Δt=T2, we modify the
usual recovery so that the state is returned to the codespace
after an error Lu, though perhaps with a logical error. This
modification results in a Markovian, trace-preserving
effective dynamics over the two-dimensional codespace,
given by Leff. Specifically, the sensor’s effective dynamics
becomes that of a dephasing qubit with A ¼ γjvu · hj
and B ¼ γ2λu, giving ηðuÞQEC ¼ η1

ffiffiffiffiffi
λu

p
=jvu · hj. The optimal

choice of u is the one that minimizes this quantity, giving,

ηQEC ¼ 1

kD−1=2
C V⊤hk∞

ffiffiffiffiffi
2e
T2

s
; ð19Þ

valid for arbitrary noise correlation profile C [48]. The
straightforward but lengthy calculation is given in the
Supplemental Material [31].
Equation (19) identifies the C’s for which this QEC

scheme provides enhanced sensitivity over parallel and
GHZ sensing. Notice that while HNLS is satisfied only in a
measure-zero set of C’s, QEC can enhance sensitivity over
a much larger set, regardless of whether it can approach the
Heisenberg limit in t.
Equation (19) admits a broad range of ηQEC vs N

scalings due to the critical dependence of ηQEC on
C ¼ CðNÞ. The same is true of the Fisher information in
the HNLS limit as we show in Ref. [31].
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Discussion.—We have shown that noiseless ancillas,
while frequently invoked, are not required for a large
family of error-corrected quantum sensing scenarios where
the Hamiltonian and the noise operators all commute. Our
proof is constructive and gives a numerical method for
designing QEC codes for sensing through semi-
definite programming, analogous to the techniques from
Refs. [49,50] for quantum computing. Commuting noise,
however, is not necessary for ancilla-free codes [10–12]
and it is an interesting open problem to refine Theorem 1
into a necessary and sufficient condition.
We also introduced near-optimal, closed-form QEC

codes and associated recoveries for two common sensing
scenarios. For dephasing qubits, we found an expression
for the sensitivity enhancement offered by our QEC scheme
under arbitrary Markovian noise, even when the
Heisenberg limit in t could not be reached. Our results
raise the questions of whether there exists a simple geo-
metric condition defining the set of C’s for which QEC can
enhance sensitivity, and whether or not Eq. (19) is a
fundamental bound for QEC schemes. More broadly, our
results show that ancilla-free, task-oriented QEC code
design through convex optimization is a promising tool
to enhance near-term quantum devices.
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[29] C. Bény, Phys. Rev. Lett. 107, 080501 (2011).
[30] S. Boyd and L. Vandenberghe, Convex Optimization

(Cambridge University Press, Cambridge, England, 2004).
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.040502 for detailed
derivations and examples, which includes Refs. [32–35].

[32] E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84,
2525 (2000).

[33] H. Yuan, Phys. Rev. Lett. 117, 160801 (2016).
[34] S. Pang and A. N. Jordan, Nat. Commun. 8, 14695 (2017).
[35] P. Davis, Circulant Matrices, in Pure and Applied

Mathematics (Wiley, New York, 1979).

PHYSICAL REVIEW LETTERS 122, 040502 (2019)

040502-5

https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1080/09500349808231241
https://doi.org/10.1103/PhysRevLett.112.150802
https://doi.org/10.1103/PhysRevLett.112.150801
https://doi.org/10.1103/PhysRevLett.112.150801
https://doi.org/10.1103/PhysRevLett.116.230502
https://doi.org/10.1103/PhysRevLett.116.230502
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevLett.112.080801
http://arxiv.org/abs/arXiv:1310.3432
http://arxiv.org/abs/arXiv:1310.3432
http://arxiv.org/abs/arXiv:1310.3432
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.22331/q-2017-09-06-27
https://doi.org/10.1103/PhysRevX.7.041009
https://doi.org/10.1038/s41467-017-02510-3
https://doi.org/10.1038/s41467-017-02510-3
https://doi.org/10.1038/s41534-018-0082-2
https://doi.org/10.1038/s41534-018-0082-2
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1109/TIT.1968.1054108
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevLett.107.080501
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.040502
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.117.160801
https://doi.org/10.1038/ncomms14695


[36] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga,
W.M. Itano, and J. J. Bollinger, Nature (London) 458,
996 (2009).

[37] W.M. Witzel, M. S. Carroll, A. Morello, L. Cywiński,
and S. Das Sarma, Phys. Rev. Lett. 105, 187602
(2010).

[38] H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V.
Umansky, and A. Yacoby, Nat. Phys. 7, 109 (2011).

[39] M.W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. Hollenberg, Phys. Rep. 528, 1 (2013),
the nitrogen-vacancy color center in diamond.

[40] J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson,
R. Kalra, T. Sekiguchi, K. M. Itoh, D. N. Jamieson, J. C.
McCallum, A. S. Dzurak et al., Nat. Nanotechnol. 9, 986
(2014).

[41] J.-L. Orgiazzi, C. Deng, D. Layden, R. Marchildon, F.
Kitapli, F. Shen, M. Bal, F. R. Ong, and A. Lupascu, Phys.
Rev. B 93, 104518 (2016).

[42] j0Li ¼ j þ � � � þi and j1Li ¼ j − � � �−i, where j�i ¼
ðj0i � j1iÞ= ffiffiffi

2
p

.

[43] I. L. Chuang, D. W. Leung, and Y. Yamamoto, Phys. Rev. A
56, 1114 (1997).

[44] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials
(Chapman and Hall/CRC, Boca Raton, 2002).

[45] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert,
J. Salmilehto, L. Jiang, and S. M. Girvin, Phys. Rev. X
6, 031006 (2016).

[46] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going
beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory
and Conceptions of the Universe (Springer Netherlands,
Dordrecht, 1989), pp. 69–72.

[47] D. Lidar and T. Brun, Quantum Error Correction
(Cambridge University Press, Cambridge, England, 2013).

[48] D−1=2
C is undefined when C is singular. In this case, Eq. (19)

should be regularized by replacing DC → DC þ ϵI, evalu-
ating the norm, then taking ϵ → 0.

[49] A. S. Fletcher, P. W. Shor, and M. Z. Win, Phys. Rev. A 75,
012338 (2007).

[50] R. L. Kosut and D. A. Lidar, Quantum Inf. Process. 8, 443
(2009).

PHYSICAL REVIEW LETTERS 122, 040502 (2019)

040502-6

https://doi.org/10.1038/nature07951
https://doi.org/10.1038/nature07951
https://doi.org/10.1103/PhysRevLett.105.187602
https://doi.org/10.1103/PhysRevLett.105.187602
https://doi.org/10.1038/nphys1856
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1038/nnano.2014.211
https://doi.org/10.1038/nnano.2014.211
https://doi.org/10.1103/PhysRevB.93.104518
https://doi.org/10.1103/PhysRevB.93.104518
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevA.75.012338
https://doi.org/10.1103/PhysRevA.75.012338
https://doi.org/10.1007/s11128-009-0120-2
https://doi.org/10.1007/s11128-009-0120-2

