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Quantum nonlocality is usually associated with entangled states by their violations of Bell-type
inequalities. However, even unentangled systems, whose parts may have been prepared separately, can
show nonlocal properties. In particular, a set of product states is said to exhibit “quantum nonlocality
without entanglement” if the states are locally indistinguishable; i.e., it is not possible to optimally
distinguish the states by any sequence of local operations and classical communication. Here, we present a
stronger manifestation of this kind of nonlocality in multiparty systems through the notion of local
irreducibility. A set of multiparty orthogonal quantum states is defined to be locally irreducible if it is not
possible to locally eliminate one or more states from the set while preserving orthogonality of the
postmeasurement states. Such a set, by definition, is locally indistinguishable, but we show that
the converse does not always hold. We provide the first examples of orthogonal product bases on
Cd ⊗ Cd ⊗ Cd for d ¼ 3, 4 that are locally irreducible in all bipartitions, where the construction for d ¼ 3

achieves the minimum dimension necessary for such product states to exist. The existence of such product
bases implies that local implementation of a multiparty separable measurement may require entangled
resources across all bipartitions.
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Composite quantum systems, parts of which are physi-
cally separated, can possess nonlocal properties. The most
well-known manifestation of quantum nonlocality—Bell
nonlocality [1], arises from entangled states [2]. Entangled
states are nonlocal for they violate Bell-type inequalities
[3–11]—the family of inequalities that must be satisfied by
probabilities arising from any local realistic theory. Apart
from the foundational implications, Bell nonlocality tests
have applications in quantum technologies as they quantify
nonclassicality in a device-independent manner [12–16].
Nonlocal properties, however, are not restricted only

to entangled systems. In the seminal paper [17] Quantum
nonlocality without entanglement, Bennett et al. showed
that product states can exhibit nonlocal properties in a way
fundamentally different from Bell nonlocality. In particular,
they considered the following problem: Suppose that a
quantum system, consisting of two parts held by separated
observers, was prepared in one of several known orthogo-
nal product states. The task is to identify, as well as
possible, in which state the system is in, using local

operations and classical communication (LOCC). The
question they asked was whether for any known set of
orthogonal product states exact discrimination is always
possible using LOCC.
Now intuition suggests that the answer to the above

question ought to be yes because product states admit
local preparation (following some known set of rules),
and therefore, it should be possible to learn about the
state of the system with local measurements alone. But
surprisingly, the authors presented an orthogonal pro-
duct basis (OPB) on C3 ⊗ C3 for which exact discrimi-
nation is not possible using LOCC [17]. Subsequently,
more such examples were found in both bipartite [18–23]
and multiparty systems [18,20,21,24–30] and their proper-
ties explored [18,19,31–34].
The possibility of this kind of result was, in fact, first

pointed out by Peres and Wootters a few years earlier [35]
(also see Refs. [36,37]). For a specific set of three non-
orthogonal product states, they conjectured that LOCC
measurements are suboptimal for state discrimination.
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The conjecture was only recently shown to be true [38].
We now say that any set of product states that cannot
be optimally (exactly, if and only if the states are orthogo-
nal) distinguished by LOCC exhibit nonlocality without
entanglement. Here, nonlocality is in the sense that a
measurement on the whole system reveals more informa-
tion about the state of the system than any sequence of
LOCC on their parts, even though they may have been
prepared in different labs. Let us also note that the recent
PBR theorem [39] (also see Refs. [40,41]) reveals yet
another nonlocal feature of nonorthogonal product states,
where state elimination with certainty becomes possible
only by entangled measurements on the joint system.
The results of Peres-Wootters [35] and Bennett et al. [17]

initiated a plethora of studies on more general local state
discrimination problems—the task of optimal discrimina-
tion of multiparty states, not necessarily product, by means
of LOCC [17,18,21–23,25–30,32–34,37,38,42–72]. It was
found that in some cases, e.g., a set of two pure states, LOCC
can indeed accomplish the task as efficiently as global
measurements [51,52], whereas in some other cases, e.g.,
orthogonal entangled bases [53,55–58,61,63,65,68,70] they
cannot, and we call such states locally indistinguishable.
Locally indistinguishable states have found useful applica-
tions in quantum cryptography primitives such as data
hiding [73–76] and quantum secret sharing [77].
In this Letter, we report new nonlocal properties of

multiparty orthogonal product states—within the frame-
work of local state discrimination, but considering instead a
more basic problem—quantum state elimination using
orthogonality-preserving local measurements (a measure-
ment is orthogonality preserving if the postmeasurement
states remain orthogonal). The motivation stemmed from
the observation that some sets of orthogonal states on a
composite Hilbert space are locally reducible; i.e., it is
possible to locally eliminate one or more states from the set
while preserving orthogonality of the postmeasurement
states. For such sets, the task of local state discrimination is
therefore reduced to that of a subset of states.
While a locally distinguishable set is locally reducible

(trivially), the opposite is not true in general. In the
following examples, the locally indistinguishable sets are
locally reducible to a union of two or more disjoint subsets,
each of which can be addressed individually.
(a) Consider the entangled orthogonal basis onC2 ⊗ C4:

j00i � j11i j02i � j13i
j01i � j10i j03i � j12i: ð1Þ

Here, Bob performs a local measurement to distinguish the
subspaces spanned by fj0i; j1ig and fj2i; j3ig. Depending
upon the outcome, Alice and Bob end up with a state
belonging to one of the two subsets (left or right). Note that,
neither subset is locally distinguishable [53] (in fact, neither
is locally reducible—see Proposition 2).

(b) Consider the orthogonal basis on C3 ⊗ C3:

j00i � j11i j02i j20i j22i
j01i � j10i j12i j21i: ð2Þ

Here, if the unknown state is one of the product states, it
can always be correctly identified, and if it is not, all
product states can be locally eliminated. In the latter case,
Alice and Bob will end up with one of the four Bell states
(local protocol given in Appendix A [78]). Note that, unlike
the previous example, here not all the subsets are locally
indistinguishable.
The above examples give rise to the following question:

Are all locally indistinguishable sets locally reducible? The
answer is no. As will be shown, some of the well-known
locally indistinguishable sets are not locally reducible.
First, we have the following definition.
Definition 1.—(Locally irreducible set) A set of orthogo-

nal quantum states on H ¼ ⨂n
i¼1Hi with n ≥ 2 and

dimHi ≥ 2, i ¼ 1;…; n, is locally irreducible if it is not
possible to eliminate one or more states from the set by
orthogonality-preserving local measurements.
A locally indistinguishable set in general is not locally

irreducible except when it contains three orthogonal pure
states.
Proposition 1: Any set of three locally indistinguish-

able orthogonal pure states on H ¼ ⨂n
i¼1Hi with n ≥ 2

and dimHi ≥ 2, i ¼ 1;…; n, is locally irreducible.
Since any two orthogonal pure states can be exactly

distinguished by LOCC [51], a locally reducible set
containing three orthogonal pure states must be locally
distinguishable. But this contradicts the fact that the set
is known to be locally indistinguishable. This proves the
proposition.
We will now describe a sufficient condition for local

irreducibility. The formalism was originally developed [54]
(also see Refs. [43,44]) for local indistinguishability. We
begin by defining a nontrivial measurement [54].
Definition 2.—A measurement is nontrivial if not all the

POVM elements are proportional to the identity operator.
Otherwise, the measurement is trivial.
The crux of the argument [54] was that, in any local

protocol one of the parties must go first, and whoever goes
first must be able to perform some nontrivial orthogonality-
preserving measurement (NOPM). This fits naturally into
our scenario for the following reasons. The measurement
should be orthogonality preserving because we require that
any measurement outcome must leave the postmeasure-
ment states mutually orthogonal, possibly eliminating
some states but not all (unless it correctly identifies the
input right away). It is also essential that the measurement
is nontrivial because a trivial measurement despite satisfy-
ing (trivially) the orthogonality-preserving conditions,
gives us no information about the state. The sufficient
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condition follows by noting that, if none of the parties can
perform a local NOPM, the states must be locally
irreducible.
Following Ref. [54] we now discuss how to apply this

condition when a set contains only orthogonal pure states.
The basic idea is to check whether an orthogonality-
preserving POVM on any of the subsystems is trivial or
not. If it is trivial for all subsystems, the states are locally
irreducible.
Let S ¼ fjψ iigki¼1 be a set of orthogonal pure states on

H ¼ ⨂n
i¼1Hi, where n ≥ 2, and dimHi ≥ 2, i ¼ 1;…; n.

Consider a POVM fπiαg, α ¼ 1; 2;… that may be per-
formed on the ith subsystem. The POVM elements πiα
are positive operators summing up to identity and cor-
respond to the measurement outcomes. Further, each
element admits the Krauss form: πiα ¼ Mi†

α Mi
α, where Mi

αs
are the Krauss operators. The probability that an input
state jψxi ∈ S yields the outcome α is pα ¼ hψxjI1 ⊗
� � � ⊗ πiα ⊗ � � � ⊗ Injψxi with the corresponding postmea-
surement state given by ð1= ffiffiffiffiffiffi

pα
p ÞðI1 ⊗ � � � ⊗ Mi

α ⊗
� � � ⊗ InÞjψxi. Since we require the POVM to be ortho-
gonality preserving, for all pairs of states fjψxi; jψyig,
x ≠ y and all outcomes α, the conditions

hψxjI1 ⊗ � � � ⊗ πiα ⊗ � � � ⊗ Injψyi ¼ 0 ð3Þ

need to be satisfied. To use the above conditions effectively,
we represent each POVM element πiα, α ¼ 1; 2;… by a
di × di matrix (in the computational basis) and solve for the
matrix elements by choosing suitable pairs of vectors (also
expressed in the computational basis of H). This can
be done exactly in many problems of interest. Now if
we find that the conditions (3) are satisfied only if πiα is
proportional to the identity for all α, then the measurement
is trivial. This means the ith party cannot begin a LOCC
protocol, and if this is true for all i, then none of the parties
can go first. Therefore, S is locally irreducible. We will use
this condition extensively in our proofs.
The OPB on C3 ⊗ C3 [17] is locally irreducible. This

follows from the proof showing that the states are locally
indistinguishable [54]. We now show that the Bell basis and
the three-qubit Greenberger-Horne-Zeilinger (GHZ) basis
are locally irreducible (both are locally indistinguish-
able [53,55]) using the method just described.
Proposition 2: The two-qubit Bell basis (unnormal-

ized): j00i � j11i, j01i � j10i is locally irreducible.
The proof is by contradiction. Suppose that the Bell basis

is locally reducible. Then, either Alice or Bob must be able
to begin the protocol by performing some local NOPM.
Without loss of generality assume that Bob goes first. Bob’s
general measurement can be represented by a set of 2 × 2
POVM elements πα ¼ ða00a10

a01
a11
Þ written in the fj0i; j1ig

basis. Since this measurement is orthogonality preserving,
for any pair of Bell states the conditions (3) must hold.

By choosing suitable pairs, it is easy to show that πα must
be proportional to the identity (details in Appendix B [78]).
As the argument holds for all outcomes, all of Bob’s POVM
elements are proportional to the identity. This means Bob
cannot go first, and from the symmetry of the Bell states,
neither can Alice. This completes the proof.
Proposition 3: The three-qubit GHZ basis (unnormal-

ized): j000i � j111i, j011i � j100i, j001i � j110i, j010i�
j101i, is locally irreducible.
The proof is along the same lines as in the previous

one and is given in Appendix C [78] (can be extended for a
N-qubit GHZ basis).
We now come to the main part of the Letter. Here

we consider the following question: Do there exist
multiparty orthogonal sets that are locally irreducible in
every bipartition? The motivation for asking this question is
that many of the properties of multiparty states in general
are not preserved if we change the spatial configuration.
For example, the three-party (A, B, and C) unextendible
product basis (UPB) on C2 ⊗ C2 ⊗ C2 [18] is locally
indistinguishable (hence, nonlocal when all parts are
separated) but can be perfectly distinguished across all
bipartitions AjBC, BjCA, and CjAB [18] using LOCC
(and therefore, not nonlocal in the bipartitions). In fact, one
can also find sets of entangled states that are locally
distinguishable in one bipartition but not in others (see
Appendix D [78]).
So which sets of orthogonal states are expected to

remain locally irreducible in all bipartitions? Intuition
suggests that a genuinely entangled orthogonal basis
(the basis vectors are entangled in every bipartition) is
a promising candidate because in any bipartition, the
states are not only locally indistinguishable but also none
can be correctly identified with a nonzero probability
using LOCC [55]. However, we find that the GHZ basis,
which is genuinely entangled and locally irreducible
[Proposition 3], is locally reducible in all bipartitions.
Proposition 4: The three-qubit GHZ basis given in

Proposition 3 is locally reducible in all bipartitions.
The proof is simple. Note that, one can always perform a

joint measurement on any two qubits to distinguish the
subspaces spanned by fj00i; j11ig and fj01i; j10ig. Thus
in any bipartition, the whole set can be locally reduced
to two disjoint subsets, each of which is locally equivalent
to the Bell basis (the proof can be extended mutatis
mutandis for a N-qubit GHZ basis with the identical
conclusion).
Proposition 4 gives rise to an interesting question: Can

multiparty orthogonal product states be locally irreducible
in all bipartitions? If such sets exist, then they would clearly
demonstrate quantum nonlocality stronger than what we
presently understand.
First we observe that such product states cannot be found

in systems where one of subsystems has dimension two:
If the system contains a qubit, then the set is locally
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distinguishable in the bipartition qubitjrest because
orthogonal product states on C2 ⊗ Cd, d ≥ 2 are known
to be locally distinguishable [20]. So they can only exist,
if at all, on H ¼ ⨂n

i¼1Hi, n ≥ 3, where dimHi ≥ 3 for
every i. Thus the minimum dimension corresponds to a
three-qutrit system.
We checked all the known examples (to the best of our

knowledge) of locally indistinguishable multiparty
orthogonal product states, but did not find any with the
desired property. Some were ruled out by the dimension-
ality constraint, and the rest turned out to be either locally
distinguishable [20,24,26,28,29,43,44,48] or locally reduc-
ible [30] in one or more bipartitions.
The main result of this Letter lies in showing that

multiparty orthogonal product states that are locally irre-
ducible in all bipartitions, exist. We call such sets strongly
nonlocal.
Definition 3.—Consider a composite quantum system

H ¼ ⨂n
i¼1Hi with n ≥ 3 and dimHi ≥ 3, i ¼ 1;…; n. A

set of orthogonal product states jψ ii ¼ jαii1 ⊗ jβii2 ⊗
� � � ⊗ jγiin on H is strongly nonlocal if it is locally
irreducible in every bipartition.
We now give an example of an OPB on C3 ⊗ C3 ⊗ C3

and prove it strongly nonlocal. Note that, this construction
achieves the minimum dimension required (as discussed
earlier). Wewill use the notation j1i, j2i, j3i for the bases of
Alice, Bob, and Charlie’s Hilbert spaces. Consider the
following OPB on C3 ⊗ C3 ⊗ C3:

j1ij2ij1� 2i j2ij1� 2ij1i j1� 2ij1ij2i
j1ij3ij1� 3i j3ij1� 3ij1i j1� 3ij1ij3i
j2ij3ij1� 2i j3ij1� 2ij2i j1� 2ij2ij3i
j3ij2ij1� 3i j2ij1� 3ij3i j1� 3ij3ij2i
j1ij1ij1i j2ij2ij2i j3ij3ij3i; ð4Þ

where j1� 2i stands for ð1= ffiffiffi
2

p Þðj1i � j2iÞ, etc. Note that,
the set (4) is invariant under cyclic permutation of the
parties A, B, and C. We first show that the states are locally
irreducible.
Lemma 1: The set of states given by (4) on C3 ⊗ C3 ⊗

C3 is locally irreducible.
To prove the lemma, we first consider the following

states

j1ij2ij1� 2i j2ij1� 2ij1i j1� 2ij1ij2i
j1ij3ij1� 3i j3ij1� 3ij1i j1� 3ij1ij3i; ð5Þ

chosen from the whole set. For the above states it
was shown [26] that any 3 × 3 orthogonality-preserving

POVM acting on any subsystemmust be proportional to the
identity. Clearly, this must also hold for the whole set (4)
of which the states (5) form a subset because all the
states belong to the same state space C3 ⊗ C3 ⊗ C3.
Therefore, none of the parties can begin a LOCC protocol
by performing some local NOPM. Hence, the proof
(for completeness, we have included the details in
Appendix E [78]).
Theorem 1: The orthogonal product basis (4) is

strongly nonlocal.
We need to show that the states (4) form a locally

irreducible set in any bipartition. To begin with, consider
the bipartition AjBC (HA ⊗ HBC). In this bipartition the
states (4) take the form

j1ij21� 22i j2ij11� 21i j1� 2ij12i
j1ij31� 33i j3ij11� 31i j1� 3ij13i
j2ij31� 32i j3ij12� 22i j1� 2ij23i
j3ij21� 23i j2ij13� 33i j1� 3ij32i
j1ij11i j2ij22i j3ij33i: ð6Þ

Physically this means the subsystems B and C are treated
together as a nine-dimensional subsystem BC. For clarity,
denote the elements of the basis fjijig3i;j¼1 on HBC as:
∀ i ¼ 1, 2, 3, j1ii → jii, j2ii → jiþ 3i, and j3ii → jiþ 6i
and rewrite the states (6) as

j1ij4� 5i j2ij1� 4i j1� 2ij2i
j1ij7� 9i j3ij1� 7i j1� 3ij3i
j2ij7� 8i j3ij2� 5i j1� 2ij6i
j3ij4� 6i j2ij3� 9i j1� 3ij8i
j1ij1i j2ij5i j3ij9i: ð7Þ

We now show that any orthogonality-preserving local
POVM performed either on A or BC must be trivial.
Therefore, neither Alice (A) nor Bob and Charlie together
(BC) can go first.
First, consider Alice. Recall that, Lemma 1 holds

because none of the parties can perform a local NOPM
when all parts are separated. Since in the bipartition AjBC
Alice’s subsystem is still separated from the rest, we
conclude that Alice cannot go first.
We now consider whether it is possible to initiate a local

protocol by performing some NOPM on BC. Let the
POVM fΠαg describe a general orthogonality-preserving
measurement on BC. Each POVM element Πα can be
written as a 9 × 9 matrix in the fj1i;…; j9ig basis of HBC:
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Πα ¼

0
BBBBBBBBBBBBBBBB@

a11 a12 a13 a14 a15 a16 a17 a18 a19
a21 a22 a23 a24 a25 a26 a27 a28 a29
a31 a32 a33 a34 a35 a36 a37 a38 a39
a41 a42 a43 a44 a45 a46 a47 a48 a49
a51 a52 a53 a54 a55 a56 a57 a58 a59
a61 a62 a63 a64 a65 a66 a67 a68 a69
a71 a72 a73 a74 a75 a76 a77 a78 a79
a81 a82 a83 a84 a85 a86 a87 a88 a89
a91 a92 a93 a94 a95 a96 a97 a98 a99

1
CCCCCCCCCCCCCCCCA

:

ð8Þ
The measurement must leave the postmeasurement states
mutually orthogonal. By choosing suitable pairs of vectors
fjψ ii; jψ jig, i ≠ j, we find that all the off-diagonal matrix
elements aij, i ≠ j must be zero if the orthogonality-
preserving conditions hψ ijI ⊗ Παjψ ji ¼ 0 are to be sat-
isfied. Table I in Appendix F [78] shows the complete
analysis. Similarly, we find that the diagonal elements
are all equal. For example, by setting the inner product
h1jh4þ 5jI ⊗ Παj1ij4 − 5i ¼ 0, we get a44 ¼ a55. Table II
(Appendix F [78]) summarizes this analysis. As the
diagonal elements of Πα are all equal and the off-diagonal
elements are all zero, Πα must be proportional to the
identity. The argument applies to all measurement out-
comes, and thus all POVM elements fΠαg must be
proportional to the identity. This means the POVM must
be trivial, and therefore, BC cannot go first. Thus the states
(7) form a locally irreducible set in the bipartition AjBC.
Now from the symmetry of the states (4) (invariant under
cyclic permutation of the parties), it follows that the states
(4) are also locally irreducible in the bipartitions CjAB, and
BjCA. This completes the proof of the theorem.
In Appendix G [78] we have given an example of a

strongly nonlocal OPB on C4 ⊗ C4 ⊗ C4 along with the
complete proof.
We now discuss the question of local discrimination of

strongly nonlocal product states using entanglement as a
resource. Note that, in our examples, the three-party sepa-
rable measurements cannot be locally implemented even if
any two share unlimited entanglement. So exact local
implementation would require a resource state which must
be entangled in all bipartitions (this also holds for product
states that are locally indistinguishable in all bipartitions
[30] but not strongly nonlocal). As to how much entangle-
mentmust one consume, we do not have any clear answer. A
teleportation protocol can perfectly distinguish the states (4)
using C3 ⊗ C3 maximally entangled states shared between
any two pairs, but whether one can do just as well using
cheaper resources (see Ref. [31]) is an intriguing question.
The results in this Letter also leave open other interesting

questions. One may consider generalizing our construc-
tions on ⨂n

i¼1C
d for n ≥ 4, and d ≥ 3. Another problem

worth considering is whether incomplete orthogonal prod-
uct bases can be strongly nonlocal, e.g., can we have a
strongly nonlocal UPB? Finally, one may ask, whether one
can find entangled bases that are locally irreducible in all
bipartitions. In view of Proposition 4, it seems that to satisfy
“local irreducibility in all bipartitions,” the structure of the
states is likely to be more important than their entangle-
ment. Here, even examples in the simplest case of C2 ⊗
C2 ⊗ C2 can help us to understand this property better.
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