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We show that an inhomogeneity in the spin-transfer torques in a metallic ferromagnet under suitable
conditions strongly amplifies incoming spin waves. Moreover, at nonzero temperatures the incoming
thermally occupied spin waves will be amplified such that the region with inhomogeneous spin-transfer
torques emits spin waves spontaneously, thus constituting a spin-wave laser. We determine the spin-wave
scattering amplitudes for a simplified model and setup, and show under which conditions the amplification
and lasing occurs. Our results are interpreted in terms of a so-called black-hole laser, and could facilitate the
field of magnonics, which aims to utilize spin waves in logic and data-processing devices.
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Introduction.—Spin waves are collective excitations in
magnetically ordered materials. At the semiclassical level,
spin waves in ferromagnets correspond to a wavelike
pattern of precessing spins in which the relative phase of
the precession of two spatially separated spins is deter-
mined by the ratio of their distance to the wavelength
of the spin wave. When the exchange interactions domi-
nate, the spin precession is circular. Anisotropies and
dipolar interactions, however, generically lead to ellipti-
cally precessing—in short, elliptical—spin waves.
Though spin waves are neutral excitations, they are able to

transfer angular momentum. Magnonics [1,2] is named after
the quasiparticle, the magnon, associated with a spin wave.
This field has the ultimate goal of controlling and manipu-
lating spin waves to the point that they can be used to realize
energy-efficient data-processing and logic devices. One
hurdle to realize technology based on spin waves is that
they have a finite lifetime as a result of processes that lead to
loss of spin angular momentum and relax the magnetization.
Hence, experimental progress has been nearly exclusively
made using a unique low magnetic-damping material: the
complex magnetic insulator yttrium iron garnet (YIG),
thereby limiting the process as it is difficult to fabricate
and pattern at high quality in reduced dimensions.
The relaxation of spin waves can be counteracted by

injection of spin angular momentum [3,4]. This has been
demonstrated in YIG/Pt [5] and Permalloy/Pt-based
material systems [6] with electrically driven spin injection
via the spin Hall effect [7] and in YIG/Pt with thermally
driven spin injection [8,9]. In these examples, the amplitude
enhancement of the spin waves is proportional to the
applied bias, which may be a limiting factor in case the
damping that needs to be overcome is large, or because of
the associated heating.

Other proposed mechanisms for the amplification of spin
waves involve the interaction of spin waves with electro-
magnetic [10–14] or magnetoelastic [15] waves. These
have the drawback that the input signal is an alternating (ac)
signal of which the frequency needs to be matched to that
of the spin waves. Moreover, the inductive coupling of spin
waves with electromagnetic waves becomes small as
devices are miniaturized.
In this Letter, we propose a different way to amplify spin

waves. In our proposal the input is a direct current (dc),
whereas the frequency of the amplified spin waves can be
tuned by appropriate device geometry. Our scheme is well
suited for miniaturization as it makes use of the spin-
transfer torques that arise in the bulk of ferromagnetic
metals as a result of the interaction between the spin-
polarized electronic current and the magnetization [16].
The basic setup we consider is sketched in Fig. 1. It consists
of a ferromagnetic metallic wire with a constriction. A
charge current driven through the wire will have a larger
current density in the narrow part of the wire, as compared
to the wider parts. As a result, the velocity that characterizes
the spin-transfer torques and determines, for example, the
current-induced spin-wave Doppler shift [17] will be larger
in the narrower part of the wire. For sufficiently large
current densities, the Doppler shift will make the spin-wave
energies and frequencies in the narrow part of wire negative
(indicated in red in Fig. 1), while in the wider parts of the
wire they remain positive. Moreover, in the case of a finite
spin-wave ellipticity, the spin waves with positive and
negative energy are coupled in the regions where the width
of the wire changes. As a result of this coupling, spin waves
can be created simultaneously in the wide and narrow parts
of the wire without changing the total magnetic energy.
For the spin-wave modes that bounce back and forth in
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the narrow part of the wire, the coupling between negative-
energy and positive-energy spin waves can be resonant.
We show that this leads to an enormous enhancement of
the transmission and reflection amplitudes for spin waves
that are scattered off the narrow part of the wire and that
fulfil the resonance condition. Moreover, this enhancement
is so large that the thermally excited spin waves that fulfill
the resonance condition will be amplified and emitted from
the narrow part of the wire and overwhelm all other spin
waves, thus constituting a spin-wave laser.
Model and setup.—We consider a ferromagnetic metal

subject to an external field B in the z direction, and charge
current j. The magnetization direction nðx; tÞ obeys the
Landau-Lifshitz-Gilbert equation with spin-transfer torques
that is given by [16]

ð∂t þ vs ·∇Þn ¼ n ×Heff − αn ×

�
∂t þ

β

α
vs ·∇

�
n: ð1Þ

This equation describes precession of the magnetization
around the effective field Heff ¼ −δE=ℏδn, where E is the
magnetic energy functional. We consider a generic energy
functional that incorporates exchange, anisotropy, and the
external field and is given by

E¼
Z

dV
a3

�
−
1

2
Jn ·∇2nþ 1

2
Kxn2xþ

1

2
Kyn2y −Bnz

�
: ð2Þ

In this expression, a is the size of the unit cell, J is the
exchange constant, andKx andKy are anisotropy constants.
In case that the anisotropy constants are equal, the spin
waves are circular. Because of shape and crystalline
anisotropy, the spin wave are typically elliptical, corre-
sponding to the case that Kx ≠ Ky.

The spin-transfer torques [3,4] in the Landau-Lifshitz-
Gilbert equation (1) are characterized by the velocity vs ¼
−gPμBj=2eMs, which is proportional to the current density
and further determined by the current polarization P, the
Landé factor g, the Bohr magneton μB, the elementary
charge e, and the saturationmagnetizationMs. The adiabatic
spin-transfer torque [18,19] appears on the left-hand side of
Eq. (1), whereas the nonadiabatic spin-transfer torque
[20,21] appears on the right-hand side and is parametrized
by the dimensionless constant β ≪ 1. The Gilbert damping
constant α ≪ 1 determines the rate of decay of the mag-
netization direction.
We take Kx, Ky, B > 0 so that the equilibrium direction

of magnetization is the z direction. Linearizing around this
equilibrium direction yields the dispersion relation,

ωk − vs · k ¼ ω0
k − iαω0

k − iðα − βÞvs · k; ð3Þ

with ℏω0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏω0Þ2 þ 2Jℏω0k2 þ J2k4 − Δ2

p
, the real

part of the spin-wave dispersion in the absence of current,
and where ℏω0 ≡ Bþ ðKx þ KyÞ=2 andΔ≡ ðKy − KxÞ=2
and we assumed Δ > 0 without loss of generality. This
parameter is to some extent tunable by the wire geometry.
In deriving the above dispersion relation, we took vs
constant, but we will drop this assumption shortly.

For jvsj > vs;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2J=ℏ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏω0Þ2 − Δ2

pq
, the

real part of the dispersion in Eq. (3) becomes negative. This
signals an energetic instability as the system may lower its
energy by creating negative-energy excitations. From now
on, we assume that β ≈ α. This implies that the system
remains dynamically stable even when it is energetically
unstable, because small-amplitude fluctuations are damped
out. This results from the imaginary part of the dispersion
relation in Eq. (3), which remains negative when β ≈ α.
In the remainder of this Letter we consider the system

sketched in Fig. 1, in which a local increase in the velocity
vs is accomplished by a narrow region in a wire of the
metallic ferromagnet. Moreover, we assume that the current
density is such that vs is above the critical value vs;c in the
narrow part of the wire, whereas it is below the critical
value in the wider parts of the wire. The resulting local spin-
wave dispersions are also sketched in Fig. 1 and correspond
approximately to shifted parabolas. The negative-energy
modes in the narrow part of the wire are indicated by the red
dispersion curve.
Scattering solutions.—We now proceed to construct

spin-wave scattering solutions to the Landau-Lifshitz-
Gilbert equation. We neglect in the first instance the
magnetization relaxation and put α ¼ β ¼ 0. We assume,
moreover, that the transverse dimensions of the wire in the
y and z direction are very small so that we may drop the
dependence of n on y and z, and may, moreover, take
vs ¼ vsðxÞx̂. We further assume that the regions where the
wire becomes wider and narrower are very small so that we
may put vs ≡ vL < vs;c independent of x in the wider part

FIG. 1. The setup that is considered in this Letter. A ferro-
magnetic wire with magnetization saturated in the z direction is
subjected to a current density driven in the long direction of the
wire. The wire has an indent such that the current density in this
narrow region is larger than in the wider parts of the wire. For
large enough currents, the resulting current-induced spin-wave
Doppler shift pushes the spin-wave energies indicated in red to
negative values in the narrow part of the wire while the spin-wave
energies in the wide parts of the wire remain positive. The spin-
wave frequency ω is sketched as a function of the wave number k
in the three different regions.
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of the wire and vs ≡ vM > vs;c independent of x in the
narrow part of the wire. We take the narrow part of the wire
between x ¼ 0 and x ¼ L.
To construct the scattering solutions it is convenient

to introduce ψ ≡ nx − iny. The linearized solutions of
the Landau-Lifshitz-Gilbert equation are then given by
ψðx; tÞ ¼ uðxÞe−iωt − v�ðxÞeiωt, where the equations for
uðxÞ and vðxÞ are found from the Landau-Lifshitz-Gilbert
equation in Eq. (1). The plane-wave solutions take the form

�
uðxÞ
vðxÞ

�
¼

�
F

G

�
eikx; ð4Þ

where F, G are complex coefficients. From the equations
for uðxÞ and vðxÞ we obtain the dispersion relation
ðωk − vs · kÞ2 ¼ ðω0

kÞ2.
From now on we take ω > 0 without loss of generality.

At a given frequency ω, there are in general four (complex)
values of k that satisfy the dispersion. These are denoted by
ki, with i ¼ 1, 2, 3, 4 and are labeled according to Fig. 2.
Different ω regimes need to be distinguished. Firstly, for
vs < vs;c, the dispersion exhibits a gap ωmin. We require
ω ≥ ωmin in order for scattering solutions to exist. For the
regions where vs < vs;c there are then two propagating
modes with real k and two growing or decaying modes with
imaginary k. Secondly, for vs > vs;c, there exists a range of
ω from ωmin to ωmax within which there exist four real wave
vectors k that satisfy the dispersion relation. For ω exceed-
ing ωmax, two of the solutions for k are real and two are
imaginary.
In what follows we will look at scattering solutions and

hence assume ω > ωmin. The coefficients of the respective
growing modes for x < 0 and x > L must vanish. In
addition, we impose matching conditions at both jumps

in vs. The functions uðxÞ and vðxÞ, as well as their first
derivatives, are required to be continuous. This leads to a
system of linear equations that can be solved for the
reflected and transmitted amplitudes. Here, the reflection
amplitude R is defined as the ratio between the F
amplitudes [Eq. (4)] of the incoming and reflected wave,
whereas the transmission amplitude T is defined as the
same ratio but for incoming and transmitted wave. (One
could also consider similar ratios of the G amplitudes. This
choice does not affect the location of the resonances.)
Results.—In Fig. 3 we show the results for the spin-wave

transmission and reflection probabilities as a function of
frequency, with the choice L ¼ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J=ℏω0

p
. For distinct

frequencies both reflection and transmission are strongly
enhanced. We refer to the peaks in the reflection and
transmission amplitudes as resonances. We have found
that the resonance condition is well approximated by the
equation

jk4 − k3j ¼
2πn
L

þO
�
1

L2

�
; ð5Þ

where n ¼ 1; 2;…. The first term of this equation has
the physical interpretation that the counterpropagating
waves corresponding to k3 and k4 interfere constructively
between x ¼ 0 and x ¼ L. Near ω ¼ ωmax, the dispersion
relation is approximately parabolic. This allows us to
describe the resonant frequencies ωn with the simple
approximate formula ωn ¼ ωmax − n2Γ2, where n ¼ 1;…;
b ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωmax − ωmin
p

=Γc and Γ ≈ π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ℏL2

p
þOð1=L2Þ. The

value of Γ is only weakly sensitive to the parameters vL,
vM, Δ. Varying the parameters vL, vM affects the location
of the resonances significantly only by shifting them all, via
a change in the value of ωmax. For ω > ωmax, there are no
resonances at all. This is explained by the fact that the wave

FIG. 2. Dispersion relation for vs < vs;c (red curves) and
vs > vs;c (blue curves). Black dots mark the four wave numbers
corresponding to a generic value ω < ωmax in the vs > vs;c sector.
Parameter values are vL ¼ 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jω0=ℏ

p
, vM ¼ 3.0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jω0=ℏ

p
,

Δ ¼ 0.3ℏω0.

FIG. 3. Transmission (broken line) and reflection (solid line)
probabilities off the spin-transfer torque inhomogeneity, see
Fig. 1, as a function of spin-wave frequency. Parameter values
are vL ¼ 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jω0=ℏ

p
, vM ¼ 3.0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jω0=ℏ

p
, Δ ¼ 0.7ℏω0.
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vectors k3, k4 are complex in this case. In Fig. 4 we have
enlarged a single resonance peak for different values of Δ.
We find that smallerΔ results in higher and narrower peaks,
but no resonances are present if Δ ¼ 0.
Given the strong enhancement of the reflection and

transmission amplitudes, the occupation of the incoming
spin waves by thermal fluctuations leads to emission of
amplified spin waves, thus forming a spin-wave laser.
From the condition in Eq. (5) it follows that the resonant
frequencies are the same for spin waves incoming from
the left and from the right of the constriction. If 1 <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmax − ωmin

p
=Γ < 2, there is only a single resonance

peak. Based on this, one can experimentally engineer a
spin-wave laser that emits spin waves at a single frequency.
Discussion and outlook.—Our results can be interpreted

as follows. The left transition region, i.e., where vs changes
from vs < vs;c to vs > vs;c, is a black-hole event horizon
for spin waves [22,23] coming in from the left (referring to
Fig. 1). The right transition from vs > vs;c to vs < vs;c is a
white-hole horizon for spin waves coming from the right.
Because the spin waves do not disperse linearly, these
horizons are referred to as dispersive horizons [24]. In the
field of analogue gravity, such a pair of black-hole-like and
white-hole-like event horizons, discussed in Ref. [23] for
spin waves, is known to be able to give rise to so-called
black-hole lasers [25,26], which exhibit the resonant
amplification and lasing we have discussed in our specific
setup and model. Within this interpretation, the resonant
amplification occurs as a result of the constructive inter-
ference of particle-hole coupling processes that arises at
each horizon. (This particle-hole coupling gives rise to
Hawking radiation in the quantum regime [27].) For the
system in Fig. 1, the negative-energy modes are the holes,
while the particles correspond to positive-energy modes.
The interpretation as a black-hole laser points to some

essential ingredients for the spin-wave amplification and

lasing. First of all, the negative-frequency and positive-
frequency modes need to be coupled. This coupling occurs
only for elliptical spin waves because these are a super-
position of positive and negative frequencies. Secondly,
though we have assumed a steplike current density, our
results are more general as any transition where vs goes
from below (or above) to above (or below) vs;c will couple
negative-energy and positive-energy modes and thus lead to
amplification and lasing. A unique ingredient of magnetic
systems is the way the horizons are implemented, i.e., using
electric current rather than flow of the spin waves them-
selves. This gives rise to the nonadiabatic spin-transfer
torque, determined by the parameter β, which has no
counterpart in other analogue gravity systems. The exist-
ence of these nonadiabatic spin-transfer torques is crucial to
make the system dynamically stable.
Typical experimentally accessible values are J ∼

10−39 Jm2 and B=μB ∼ K=μB ∼ 0.1–1 T [23], so that ω0 ∼
10–100GHz, and the length scale

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ℏω0

p
∼ 10–100 nm.

This means that resonances should be visible for systems
in the range L ∼ 10–1000 nm. For the transverse modes
to be frozen out, the transverse size of the device should
be roughly 1 order of magnitude smaller than L to have
modes propagating in the x direction that have energy well
below the first excited transverse standing modes. One
concrete but realistic implementation would be a thin film
of a few nanometers thick, with a width in the z direction
on the order of 100 nm, and L ¼ 1000 nm. Note, however,
that freezing out the transverse modes is not a necessary
ingredient but was only assumed to simplify the compu-
tations. While we have in most of our treatment ignored
magnetization relaxation (except for requiring that β ≈ α,
which is a typical situation), our results remain valid
provided the spin-wave coherence length is much longer
than L. This translates to the condition that 1=ðαkiÞ ≫ L.
This condition is easily satisfied given that α ≪ 1. For the
abovementioned typical values of anisotropies and exter-
nal fields, the current density corresponding to vs;c is on
the order of 1012 A=m2 [23]. Though large, this current
density is reached often, e.g., in experiments using pulsed
current-driven domain-wall motion [16]. Moreover, the
critical current density may, in principle, be made arbi-
trarily low by Dzyaloshinskii-Moriya interactions [28].
We have presented a simple setup and model for spin-

wave amplification and lasing. We note that the amplifi-
cation and lasing that we have discussed occurs already
within the linear spin-wave approximation. As we have
mentioned, the energy of the emitted spin waves is
provided by creating negative-energy excitations in the
narrow region of the wire. Future research could focus on
more accurate modeling of the setup in Fig. 1, including
nonlinearities, dipolar interactions, and more complicated
current patterns. Recently, numerical results were reported
that show spin-wave emission in a similar setup as the
one we consider [31]. A direct comparison between these
results and ours is postponed to future work.

FIG. 4. Transmission probabilities near a resonance, for differ-
ent Δ. The resonance peak is sharper and higher for small
Δ > 0, but is not present if Δ ¼ 0. Parameter values are vL ¼
0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jω0=ℏ

p
, vM ¼ 3.0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jω0=ℏ

p
.
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