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Trapped ions offer a pristine platform for quantum computation and simulation, but improving their
coherence remains a crucial challenge. Here, we propose and analyze a new strategy to enhance the coherent
interactions in trapped ion systems via parametric amplification of the ions’ motion—by squeezing the
collective motional modes (phonons), the spin-spin interactions they mediate can be significantly enhanced.
We illustrate the power of this approach by showing how it can enhance collective spin states useful for
quantum metrology, and how it can improve the speed and fidelity of two-qubit gates in multi-ion systems,
important ingredients for scalable trapped ion quantum computation. Our results are also directly relevant to
numerous other physical platforms in which spin interactions are mediated by bosons.
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Trapped ions are among the best developed implementa-
tions of numerous quantum technologies, including quantum
computers [1], quantum simulators [2], and quantum meas-
urement devices [3]. For example, universal quantum gate
sets have been implemented with extremely high fidelity in
small systems [4,5], while quantum spin dynamics and
entanglement generation have been demonstrated among
tens [6] and even hundreds [7] of ions. For all of these
applications, the general approach is to identify a qubit, i.e.,
two metastable atomic states, and then engineer interactions
between qubits by controllably coupling them to the ions’
collective motion (phonons), typically using lasers [1,8] or
magnetic field gradients [9,10]. Putting aside the details of
what specifically constitutes a qubit (hyperfine states of an
ion, Rydberg levels of a neutral atom, charge states of a
superconducting circuit), and what type of boson mediates
interactions between them (phonons or photons), this basic
paradigm of controllable boson-mediated interactions
between qubits is at the heart of many physical implementa-
tions of quantum technologies. In all such systems, a key
technical challenge is to make the interactions as strong as
possible without compromising the qubit.
For trapped ions, the strength of interactions between

qubits (from here forward called spins) is often limited by
the available laser power or by the current that can be driven
through a thin trap electrode. Where these technical
limitations can be overcome, other more fundamental limits

remain. For example, the scattering due to the laser beams
that generate spin-spin interactions can be the dominant
source of decoherence [4,5,7], in which case using more
laser power is not necessarily helpful [11–13]. Moreover, in
many-ion strings larger laser power can lead to decoherence
through off-resonant coupling to undesirable modes, a
source of decoherence that becomes more severe with
increasing ion number [14]. (Although this effect may be
mitigated, it requires modulating the laser parameters in a
complicated fashion [14–16].) In this Letter, we propose a
straightforward experimental strategy to increase the
strength of boson-mediated spin interactions that can also
overcome the aforementioned limitations, and is suffi-
ciently flexible to be relevant to numerous other systems
in which qubits interact by exchanging bosons. In particu-
lar, we consider modulating the ions’ trapping potential at
nearly twice the typical motional mode frequency [17].
Related forms of parametric amplification (PA) of boson-
mediated interactions have been considered recently in
systems ranging from phonon-mediated superconductivity
[18], to optomechanics [19] and cavity or circuit QED
[20,21]. Our work goes further in that we determine the
effects of PA in a driven multimode system, provide a
simple physical explanation of its effects based on ampli-
fied geometric phases (see Fig. 1), and determine the
capability of PA to enhance specific quantum information
tasks performed with trapped ions.
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Typically, spin-spin interactions between trapped ions
are induced through spin-dependent acquisition of area
swept out by phonon trajectories in phase space (Fig. 1).
An area Φ produces a multiplicative phase e−iΦ of the
corresponding spin state, a geometric phase that depends
only on the enclosed area [22–24]. The spin dependence
can be achieved by driving the ions’ motion with a spin-
dependent force (SDF), with characteristic interaction
energy f (defined below). Once spin-dependent displace-
ments have been seeded by the SDF, they can be amplified
spin independently by modulating the trapping potential
with a carefully chosen phase relative to the applied
SDF (Fig. 1). Without PA, the time it takes to accumulate
a particular geometric phase Φ—corresponding to the
generation of a particular entangled spin state—is lower
bounded by tmin ∝

ffiffiffiffi

Φ
p

=f. With PA this scaling is modi-
fied to

tmin ∝ S
ffiffiffiffi

Φ
p

=f; ð1Þ

where S < 1 is the degree of squeezing in the squeezed
mechanical quadrature, enabling a particular entangled
state to be created faster for fixed laser power or magnetic
field gradient.
Trapped ion quantum simulators.—Before describing

the effects of PA, we briefly review the standard mechanism
by which a trapped ion crystal with N ions can be made to
simulate the quantum Ising model [2],

Ĥ ¼ ℏ
1

N

X

i<j

Jijσ̂
z
i σ̂

z
j: ð2Þ

Here, σ̂zi is the z-Pauli matrix for the ith ion, with the spin
degree of freedom realized by two long-lived states.
In the Lamb-Dicke regime [25], the Hamiltonian describ-

ing an SDF oscillating at frequency μ and with peak force F
can be written in a frame rotating at μ as [28,29]

ĤSDF ¼ ℏ
X

N

m¼1

�

fmðâm þ â†mÞ
X

N

i¼1

Ui;mσ̂
z
i − δmâ

†
mâm

�

þ ĤCR: ð3Þ

Here, fm ∝ Fz0m is the coupling strength of the SDF to the
mth collective motional mode, with z0m ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2Mωm

p

the
characteristic length scale of thatmode,ωm its frequency, and
M the ion mass. The Ui;m are matrix elements of the normal
mode transformation matrix [30], and δm ≡ μ − ωm. The
counterrotating Hamiltonian ĤCR [25] can often be justifi-
ably neglected in the rotating wave approximation (RWA).
There are two situations in which Eq. (3) reduces

approximately to Eq. (2). If all of the modes are far off
resonance (δm ≫ fm), they can be eliminated adiabatically
to give the effective spin-spin interaction in Eq. (2)
[25,31,32]. Alternatively, even if fm ≳ δm for a single
mode, as long as all other modes are far off resonance
then the spin state approximately disentangles from the
motional state at times that are integer multiples of 2π=δm.
At these times the spin-state evolution is the same as that
given by Eq. (2), with Jij ∝ Ui;mUj;m × ðNf2m=δmÞ. For
example, if μ is detuned close to the center of mass (COM)
mode (m ¼ 1), then Jij ¼ J ≡ 2f21=δ1, describing all-to-all
interactions. (In what follows, we will drop the explicit
subscripts on f and δ when discussing a single mode.)
To understand the dependence of the geometric phase on

the system parameters, we can consider the phase Φ
acquired by a single spin for simplicity. There is some
freedom in how Φ is generated, namely, the phonon
trajectory can undergo any integer number of loops, each
contributing 4πðf=δÞ2 to Φ and taking a time 2π=δ. At
fixed f, reducing δ decreases the time t required to generate
Φ, but δ can only be reduced to the point where Φ ¼
4πðf=δÞ2 because at least one loop must close. At this
point, δmin ¼ f=

ffiffiffiffiffiffiffiffiffiffiffiffi

Φ=4π
p

, giving tmin ¼ 2π=δmin ∝
ffiffiffiffi

Φ
p

=f
as asserted above Eq. (1). In experiments that employ
optical dipole forces to generate the SDF, the dominant
decoherence source can be scattering from the laser beams
that occurs at a rate Γ ∝ f [12,29]. In such cases, prepa-
ration of a particular entangled spin state (corresponding to
a particularΦ) is accompanied by the minimal accumulated
decoherence Γtmin ∝

ffiffiffiffi

Φ
p

.
Parametric amplification.—We now consider what hap-

pens when the ion motion is parametrically amplified while
simultaneously being driven by the SDF. If the PA is at
twice the SDF frequency, then in a frame rotating at μ the
PA Hamiltonian is [17,25]

ĤPA ¼
X

m

ℏgm cos ð2μt − θÞðâmeiμt þ â†me−iμtÞ2: ð4Þ

Here, gm ¼ eV=ðMωmd2TÞ, with V the parametric drive
voltage amplitude and dT a characteristic trap dimension.

time

phonon mediation

space 

FIG. 1. Spin-spin interactions among trapped ions are mediated
by phonon exchange, and their strength is proportional to the rate
at which area (Φ) is enclosed by the phonon trajectories in phase
space. The trajectories enclose area faster with parametric
amplification (orange ellipse) than without (red dashed circle),
leading to stronger spin-spin interactions.
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Typically, gm depends weakly on m, and for simplicity we
ignore the m dependence in what follows. Values of g as
large as 0.1 × ω1 appear feasible, in particular for traps with
small dT . The relative phase θ between the PA and SDF can
in principle be chosen at will. We assume θ ¼ 0, which is
optimal; limitations imposed by fluctuations of θ have been
carefully analyzed and are discussed later.
At first inspection, evolution under both ĤSDF and ĤPA

seems complicated. ĤPA squeezes the motional state, while
ĤSDF entangles the spin and squeezed motional states in a
complicated way. However, under the condition 0<g<δm
[33], each mode will still undergo a closed loop in phase
space [34], returning to the initial unsqueezed motional
state and disentangling from the spin state at integer
multiples of 2π=ðδ0mÞ, with δ0m ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2m − g2
p

. The total
Hamiltonian can be written in a simple form by using a
Bogoliubov transformation b̂m ¼ cosh rmâm − sinh rmâ

†
m,

with rm ¼ − logSm and Sm ¼ ½ðδm − gÞ=ðδm þ gÞ�1=4
[19]. In terms of these transformed operators, ĤT¼ĤSDFþ
ĤPA is given by

ĤT ¼ ℏ
X

N

m¼1

�

f0mðb̂m þ b̂†mÞ
X

N

i¼1

Ui;mσ̂
z
i − δ0mb̂

†
mb̂m

�

þ ĤCR;

ð5Þ

where f0m ¼ fm=Sm and ĤCR now contains the counter-
rotating terms from both ĤSDF and ĤPA [25]. Therefore, we
obtain a Hamiltonian that is identical (in the RWA) to ĤSDF
but with rescaled drive strengths and detunings. Although
every mode is squeezed by PA, a single mode (we
assume the COM mode) will dominate the dynamics if
δ − g ≪ δm≠1 − g. Table I shows both the geometric phase
Φ and duration τ of a single loop for the COM mode,
along with the typical phase-space amplitudes αm of the
other modes, in the limit that δ − g ≪ δþ g (such that
δ0 ≈ 2δS 2). Note that δm − g is bounded by the gap
between the COM mode and its closest neighbor, so that
residual displacements αm of the spectator modes are upper
bounded as 1=S increases [25].
As argued above, without PA the fastest strategy

for obtaining a particular geometric phase Φ at fixed f
is to choose δ such that the COM mode undergoes a
single loop, giving tmin ∝

ffiffiffiffi

Φ
p

=f. With PA, we can sim-
ilarly argue that the optimal strategy to obtain Φ at
fixed f and S is to choose δ such that a single loop is
closed. Solving Φ ¼ 4πðf=δminÞ2=ð4S 6Þ for δmin [and

using tmin ¼ ð2π=δminÞ=ð2S 2Þ] gives tmin ∝ S
ffiffiffiffi

Φ
p

=f, as
claimed in Eq. (1). Thus, we can generate the same spin
state faster at fixed laser power or fixed current by reducing
S , which serves as a figure of merit for the benefits of PA.
Physically, PA squeezes the phase-space loops into ellipses
(see Fig. 1), which enclose more area (per unit time) for a
fixed SDF. For the important situation where the SDF is
generated by optical dipole forces and the decoherence
rate Γ scales with the laser intensity, the accumulated
decoherence can now be written as

Γtmin ∝ S
ffiffiffiffi

Φ
p

; ð6Þ
indicating that in principle the effect of decoherence in
generating a particular entangled spin state can be made
arbitrarily small. In practice there will be limits on S , for
example, due to the breakdown of the RWA (see Fig. 4).
For the illustrations that follow, all results based on the
RWA have been verified by numerically solving for the
dynamics of ĤT . In cases where the RWA is borderline, we
then determine the reduction of the product ftmin for fixed
Φ numerically [35], and report this reduction as the
effective degree of squeezing S eff .
Improving quantum spin squeezing.—As an exemplary

application of PA, we show how it improves quantum spin
squeezing (QSS). QSS characterizes the reduction of spin
noise in a collective spin system, and is important for both
entanglement detection [36] and precision metrology [37].
Here, we investigate the Ramsey squeezing parameter
ξR [38]; for coherent spin states, ξ2R ¼ 1, while for spin
squeezed states ξ2R < 1 [37].
A simple way to realize QSS is via single-axis twisting

[39], for which the ideal minimal squeezing parameter
scales as N−2=3 for N ≫ 1 [37,39]. This limit is very
challenging to achieve for large N. In fact, for decoherence
attributable to spontaneous spin flips in the Ising (z) basis at
a rate Γ [12,40], ξR actually saturates for large N to the
asymptotic value 3½Γ=ð2JÞ�2=3 [25,41], with the saturation
taking place when N ≫ 2J=Γ. To improve spin squeezing,
the ratio J=Γ must be improved, which can be achieved via
PA. To benchmark potential improvements, we analyze the
effects of PA quantitatively under the experimental con-
ditions in Ref. [7]. In Fig. 2(a), we plot the optimal spin

TABLE I. Rescaling of key quantities under PA.

Φ τ αm

SDF only 4πðf=δÞ2 2π=δ 2f=δm
SDFþ PA 4πðf=δÞ2=ð4S 6Þ ð2π=δÞ=ð2S 2Þ 2f=ðδm − gÞ

(a) (b)

FIG. 2. Minimal squeezing ξ2R plotted (a) as a function of N for
various situations; (b) versus 1=S eff for several values of N, with
shaded strips indicating the expected degradation of squeezing
due to a phase uncertainty of σθ ¼ 180.
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squeezing as a function of N. The two outer lines represent
SDF-only cases with (solid line) and without (dashed line)
decoherence [42]. The two intermediate lines show how the
decoherence-free results are approached as S eff is
decreased. Figure 2(b) is similar to Fig. 2(a), but shows
ξ2R as a function of 1=S eff for different N.
High fidelity two-qubit gate.—Two-qubit gates with

fidelity higher than 99.9% have recently been demonstrated
in two-ion systems [4,5], where the largest remaining error
is due to spontaneous emission from the driving lasers.
Since a gate operation corresponds to some fixedΦ, Eq. (6)
implies that the effective spontaneous emission rate can be
reduced by a factor of S for a fixed gate time.
In many-ion systems, the gate time must be much longer

than the inverse of the motional mode splitting in order to
suppress gate errors due to spin-phonon entanglement with
off-resonant modes [14]. If the gate time is reduced by
using more laser power, then off-resonant modes experi-
ence larger phase-space excursions (αm ∝ f) and the
fidelity suffers. By using PA, the gate time (τ) and the
off-resonant loop size (αm) are independent, and we can
hold the gate time fixed while decreasing αm by a factor of
S . For example, comparing with the latest modulated
pulsed laser scheme [16] that used f=2π ¼ 10 kHz for a
two-qubit gate in a 5-ion chain, we calculate that our
scheme can implement the same task with a comparable
gate time (τ ∼ 180 μs) and fidelity ≥ 99.5% using signifi-
cantly less laser power (see Fig. 3) for the same trap
frequency (ω1=2π ¼ 3.045 MHz). As shown in Fig. 3, the
fidelity can be improved by tuning g to minimize the total
residual displacements [25]. With the access to larger
g ∼ 2π × 100 kHz, PA could enable a much faster two-
qubit gate (∼30 μs) with high fidelity using moderate laser
power (f=2π ∼ 9 kHz).
Limitations.—Our analytical results have been simplified

by dropping ĤCR inEq. (5).However,when theRWAbreaks
down the enhancement due to PA can no longer be under-
stood simply in terms of the quadrature squeezing S .
Energy shifts of the Bogoliubov modes due to ĤCR can

be calculated in second-order perturbation theory as
Δδ0m ¼ ðgm=SmÞ2=ð4μÞ, and can be ignored as long as
Δδ0m ≪ δ0m [25], providing a necessary condition for the
validity of the RWA. To assess the validity of the RWAmore
quantitatively, we compare S with the effective degree of
squeezingS eff . In Fig. 4, we plot both 1=S 2

eff and 1=S
2 as

a function of g for different values of the time τ for a single-
loop gate with ω1=2π ¼ 3.045 MHz. As expected, we
observe that they agree very well for small enhancement,
deviating appreciably only once Δδ0m ¼ δ0m=2 (dot-dashed
region). Note that the maximum achievable enhancement
increases with increasing τ. The above analysis may have
implications for the limitations of PA in other systems [19].
The primary technical concerns in implementing PA

experimentally are likely to be the uncertainty in the
relative phase θ between the SDF and the PA, shot-to-shot
frequency fluctuations of δ, and imperfect control of the
interaction time. Controlling the phase of an optical-dipole
force has been demonstrated [43] but can be challenging.
Nonzero θ does not affect the period of a single loop, but it
does reduce the geometric phase Φ enclosed by that loop,
and therefore reduces the resulting spin-spin interaction
strength J. However, we can show that J depends on θ only
to second order. For both spin squeezing and two-qubit
gates, the figures of merit (squeezing amount and gate
fidelity, respectively) scale quadratically with the shift of J
around its maximal (θ ¼ 0) value [25], and therefore
depend only quartically on θ. Modeling the phase as a
zero-mean Gaussian random number with standard
deviation σθ, in Fig. 2(c) we show the expected standard
deviation in ξ2R for σθ ¼ 180. Fluctuations of δ (due to
fluctuations of either μ or ωm) affect the gate fidelity
quadratically by modifying the Bogoliubov frequencies δ0m
[25]. For the simulation shown in Fig. 3, we estimate that
fidelity > 99% is still possible with shot-to-shot frequency
fluctuations of 0.2 kHz. Imperfect timing control has a
similar effect as fluctuations in δ on the degree of spin
squeezing and the fidelity of two-qubit gates. In Fig. 3 we
show that a 1% timing error [4], reduces the gate fidelity by

FIG. 3. Two-qubit gate fidelity in a 5-ion system, calculated
from a numerical simulation of the full Hamiltonian ĤT . The
optimal fidelity with (orange triangles) and without (blue dots)
timing error (1%) as a function of the PA strength g for a gate time
τ ∼ 180 μs. The purple squares correspond to the reduction of the
laser power (f) as the PA strength is increased.

FIG. 4. Breakdown of the rotating wave approximation. The
enhancement factors 1=S 2 (solid lines) and 1=S 2

eff (points, with
dashed lines as guides to the eye) as a function of g for different
τ ¼ 2π=δ0 ≈ ð2π=gÞ=ð2S 2Þ at 4,2,1,0.5 ms from left to right. The
dotted region (red shaded) corresponds to Δδ0m ≥ δ0m=20 and the
dot-dashed region (blue shaded) corresponds to Δδ0m ≥ δ0m=2.
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about 0.3% in the 5-ion system studied. Finally, we note
that in the RWA, ĤT [Eq. (5)] and ĤSDF [Eq. (3)] have the
same form, implying that the enhancements of PA are
insensitive to the temperature of the initial motional state
[44] in the Lamb-Dicke regime.
Outlook.—To be concrete we have focused on spin

squeezing and two-qubit gates, but the techniques
described here are likely to have numerous other applica-
tions. For example, it should be possible to enhance the
creation of deeply oversqueezed (non-Gaussian) spin
states, and it may also be possible to improve amplitude
sensing of mechanical displacements [45]. Our strategy is
not exclusive of other tools in the trapped ion toolbox; for
example, it may be possible to use PA in conjunction with
dynamical controls over the driving laser to further sup-
press unwanted spin-motion entanglement in two-qubit
gates. Similar to time-dependent control schemes [14–16],
we can also utilize stroboscopic parametric driving proto-
cols to optimize the amplification of spin-spin interactions.
For example, stroboscopic protocols consisting of alternat-
ing applications of a resonant SDF and a resonant PAwith
large g can potentially increase the enhancement factor
limits from the RWA breakdown.
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