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We experimentally characterize heterogeneous nonexponential relaxation in bidisperse supercooled
colloidal liquids utilizing a recent concept called “softness” [Phys. Rev. Lett. 114, 108001 (2015)]. Particle
trajectory and structure data enable classification of particles into subgroups with different local
environments and propensities to hop. We determine residence times tR between particle hops and show
that tR derived from particles in the same softness subgroup are exponentially distributed. Using the mean
residence time t̄R for each softness subgroup, and a Kramers’ reaction rate model, we estimate the
activation energy barriers Eb for particle hops, and show that both t̄R and Eb are monotonic functions of
softness. Finally, we derive information about the combinations of large and small particle neighbors that
determine particle softness, and we explicitly show that multiple exponential relaxation channels in the
supercooled liquid give rise to its nonexponential behavior.
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When a liquid is cooled rapidly past a characteristic
onset temperature, its dynamics become increasingly slow,
nonexponential, and inhomogeneous [1–5]; this is the glass
transition. In crystalline systems, successful theories of
dynamics have been developed based on structural topo-
logical defects. The prospect of an analogous approach to
glassy dynamics, premised on structural heterogeneities, is
therefore appealing. For many years, however, no structural
order parameter predictive of dynamics was identified, and
until recently, it has remained unclear whether a connection
between structure and dynamics exists at all [6–16].
Very recent studies have shown that data from molecular

dynamics simulations or experiments can be analyzed with
machine learning methods to infer a structural order param-
eter for dynamics in supercooled liquids and disordered
solids called “softness” [17–23]. An analysis based on
softness was applied to supercooled liquids, and was shown
to simplify conceptual understanding of phenomena such
as heterogeneous dynamics and nonexponential relaxation
[18], history dependence during aging [19], and dynamics in
thin films [20]. Additionally, softness correlations were
shown to correlate with the size of rearrangements in
simulations and experiments on supercooled liquids [22].
Despite these successes, the testing of the conceptual utility
of softness has been limited to date to simulations. Besides
imaging and statistical challenges, the chief hurdle in
applying the analysis to experiments is that the approach
has required data taken at many different temperatures to
infer the many Arrhenius relaxation processes that coexist in
the system.

In this Letter we apply the softness concept to exper-
imental supercooled liquids. We corroborate the results in
Ref. [18] and show directly that structure-dependent energy
barriers may be ascertained from a thermal supercooled
colloidal liquid at a single temperature. We then leverage the
heterogeneous distribution of energy barriers to demonstrate
that it explains nonexponential relaxation observed in the
sample [24–27]. To avoid taking data at multiple temper-
atures, we determine the residence times between successive
rearrangements of individual particles and show that the
residence time distribution, conditioned on softness, is
exponential with a timescale that is monotonic in the softness;
multiple thermal activations characterized by the same decay
time are associated with particles of same softness.We use the
measured individual exponential residence times to derive
the distribution of residence times of the entire system; this
calculated system distribution is nonexponential and agrees
wellwith experiment. Therefore, relaxation inour supercooled
colloidal liquid is not intrinsically nonexponential [26,27].
Together, the measurements of relaxation time, softness, and
energy-basin shape fromparticle trajectories in a single sample
at fixed temperature and density, along with a Kramers
reaction rate model [28–31], enable us to derive a distribution
of effective free energy activation barriers in the supercooled
colloidal liquid.
Finally, we investigate the connection between softness

and local structure. We show that in bidisperse colloidal
supercooled liquids, softer particles tend to have fewer
nearby large particles. Our results demonstrate a direct
connection between the local structural environment of a
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particle, its dynamics, and the energy barriers it must
overcome to rearrange. The experiments show explicitly
that the combination of exponential processes that leads to
nonexponential relaxation in our glassy colloidal liquid has
its origin in structural heterogeneity at the particle scale.
We study aqueous experimental samples (see

Supplemental Material [32]) composed of a monolayer
of poly(N-isopropylacrylamide) (PNIPAM) hydrogel
microspheres [33] sandwiched between two cover glasses.
Observations are carried out by bright-field video micros-
copy (Leica DMR) with a 100 × oil-immersion lens. The
video is recorded by a CCD camera (UNIQ 900DS) at 10
frames per second with a resolution of 1392 × 1036 and
256 gray scale. We utilize Trackpy [34,35] to track particle
trajectories. The sample temperature is maintained at 28 °C
by an objective heater (BiOptechs). The viewing area
contains Nl ≃ 3800 large and Ns ≃ 4200 small particles
[l (s) represents large (small) particles]. The diameters,
σ ¼ 1.2 and σ0 ¼ 0.9 μm, of the large and small species,
respectively, are obtained from the first peaks of the radial
distribution functions, gllðrÞ and gssðrÞ. The packing fraction
π½Nlðσ=2Þ2 þ Nsðσ0=2Þ2�=A (A is the area of field) is
calculated to be 0.84.
Particle displacement trajectories are characterized by

many intermittent jumps, rather than the more continuous
random walks found in liquids. A typical displacement,
ΔriðtÞ≡ jr⃗iðtÞ − r⃗ið0Þj, of the ith particle is shown in
Fig. 1, right inset. This motion exhibits idle periods
separated by short-time hoplike relocations. To quantify

these intermittent dynamics, we compute the particle
“hop” function [18,36,37], phop;iðtÞ¼½hðr⃗i−hr⃗iiBÞ2iAhðr⃗i−
hr⃗iiAÞ2iB�1=2; here the angular brackets h…iA and h…iB
denote an average over the time windows A≡ ½t − δt=2; t�
and B≡ ½t; tþ δt=2�, respectively. We choose the hop
duration parameter δt ¼ 8s (Supplemental Material [32]).
Notice, phop;iðtÞ remains close to zero except when the
particle hops to a new position; then phop;iðtÞ exhibits a
large peak (Fig. 1, inset).
Intermittency in particle trajectories is characterized by a

residence time parameter, tR, defined as the separation
between successive phop;i peaks. To derive tR from the
phop;i trajectory, we choose the threshold value phop;c=σ2 ¼
0.002 (Supplemental Material [32]) to distinguish local
vibrational motion from hops. The probability distribution
function (PDF), PðtRÞ, measured from all phop;i is shown in
Fig. 1. The excess in distribution events at the shortest
times (tR < 200 s) is due to the crossover of large vibra-
tional fluctuations and small hops. The longer-time dis-
tribution (tR > 200 s) is well fit by the stretched
exponential function, P̃ðtRÞ ∼ exp½−ðtR=τÞβ�, with τ ¼
220� 37 and β ¼ 0.85� 0.04 (see Fig. 1). Note, dynamic
light scattering measurements of hydrogel-particle glass
formers found similar β; smaller β were reported in
more fragile hard-sphere glass formers [38]. Fitting
PðtRÞ with exponential form [i.e., P̃ðtRÞ with β ¼ 1] was
also tested and found to be quantitatively worse, based on
residuals, ½PðtRÞ − ˜PðtRÞ�=PðtRÞ (Fig. 1) and chi-square
errors (Supplemental Material [32]). Since hopping time
statistics are directly related to dynamical correlation
functions [39–41], the stretched exponential PðtRÞ reflects
complex relaxation in the supercooled regime. Though
many explanations exist for the nonexponential process
[26,27], early work [24,25] and recent simulations
[18–20] suggest they arise when thermal activations
involve a range of energy barriers.
Incorporation of the softness concept enables use of

PðtRÞ to understand the microscopic energy landscape in a
deeper way. To this end, we follow Refs. [17,18] and
describe the local structure near the ith particle using the
following radial density function

GX
i ðμÞ ¼

X
j≠i

exp

�
−
�
Rij − μ

0.1σ

�
2
�
: ð1Þ

Here, Rij is the distance between particles i and j; μ is a
probing radius from 0.4σ to 5.0σ in 0.1σ increments (47 μ’s
in total), and X ∈ fl; sg denotes the species of particle j.
For the bidisperse sample, we utilize 94 GX

i ðμÞ to
represent the instantaneous local structure of the ith particle
[a point in a 94-dimensional (94D) hyperspace]. We next
identify two groups of particles with “opposite” mobilities
following [18]: “soft” particles are on the verge of a hop,
and “hard” particles have the longest residence times.

FIG. 1. PðtRÞ measured for large particles. Error bars indicate
standard deviations. The red dashed line is the stretched ex-
ponential fit PðtRÞ ∼ exp½−ðtR=220Þ0.85�. The black solid line is
calculated from Eq. (3). The blue dash-dot line is the exponential
fit PðtRÞ ∼ exp½−ðtR=300Þ�. Inset (left): the relative residuals of
both fits. The residual plot is cut off at 2000 sec; points at longer
times exhibit even greater disagreement with the exponential fit,
but obscure early-time data which have excellent signal-to-noise.
Residuals are fit with quadratic functions as guides for the eye.
Inset (right) shows a trajectory (black) of particle displacement,
ΔriðtÞ≡ jr⃗iðtÞ − r⃗ið0Þj, relative to an arbitrary reference time
t ¼ 0. Here, displacement is scaled by large particle diameter, σ.
phop;i is calculated from the same trajectory.
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Utilizing only a few hundred examples of the softest and
hardest particles, we carry out a linear classification
analysis by computing the hyperplane (in the 94D hyper-
space) that “best” separates soft versus hard groups using
the support vector machine (SVM) method [42–44]. We
compute two hyperplanes, one for large central particles
and one for small central particles, to avoid misclassifica-
tions due to differences in their innate mobilities. We also
explored and found that inclusion of bond orientation
parameters did not significantly improve the accuracy of
the hyperplane.
From the trained hyperplane, we compute softness values

SiðtÞ of particle i at time t, for every particle throughout the
entire observation period. SiðtÞ is the normal displacement
between particle’s local structure (corresponding point in
the 94D hyperspace) and the best hyperplane. SiðtÞ is
centered at zero and its distribution has a Gaussian form
(Fig. 9 in the Supplemental Material [32]). Note, SiðtÞ
exhibits different spatial correlations than bond orientation
parameters [45], and its correlation length is approximately
one particle diameter [Fig. 8(b) in the Supplemental Material
[32]]. Indeed, short-range correlations of softness appear to
be a generic feature of disordered solids [22]. The mean
softness hSitR averaged during every tR interval was also
calculated; by using the mean, we remove fluctuations due to
particle vibrations, which amount to a standard deviation of
δS ¼ 0.2. The distribution of hSitR also has a Gaussian form
albeit with narrower range (Fig. 2, inset).
To explicitly show the difference in local environments

captured by the softness parameter, we report the local
radial distribution functions during every tR interval. First
we select all intervals that have similar hSitR, for particles of
species A (A ∈ fl; sg); the total number of intervals

selected is nA. Then we compute the local radial distribu-
tion of B particles (B ∈ fl; sg),

gBAðrÞ ¼
1

nA

X
A

�
nBðrÞ

2ρBπrdr

�
tR

; ð2Þ

where nBðrÞ is the instantaneous number of B particles in
a circular bin of radius, r, with bin width, dr ¼ 0.05σ,
centered on the A particle; 2πrdr is the bin area. ρB is the
number density of B particles in the viewing area.
Figure 3(a) shows the measured gll for four different

hSitR . Note, large particles tend to form small crystalline
domains (Fig. 2 in the Supplemental Material [32]). Thus
the first peaks of gll are delta-function-like, and their
heights depend inversely on dr. Interestingly, a monotonic
decrease in the magnitude of the first three peaks of gll
is apparent as hSitR increases. This observation suggests
that when the density of surrounding large particles
increases, the central particle tends to be harder and less
likely to hop. By contrast, gsl displays an opposite trend in
the first peak [Fig. 3(b)] suggesting that a softer environ-
ment is created by increasing surrounding small particle
density. Figure 3(c) shows the numbers of large (Nl

l) and
small neighbors (Ns

l ) within the radial distance r ¼ 1.2σ
from the central large particle. These results suggest that
one can make a particle softer in a binary system by
replacing neighboring large species with small ones. Note,
gls, gss, Nl

s, and Ns
s of small central particles exhibited

similar trends (Fig. 10 in Supplemental Material [32]).
We next group the tR intervals from the same particle

species by similar hSitR to derive the conditional PDF,
PðtRjhSitRÞ. Interestingly, PðtRjhSitRÞ ¼ ð1=t̄RÞe−tR=t̄R has
an exponential form; t̄R is the mean residence time
averaged over the same-softness subgroup. Figure 2 shows
the exponential distributions of PðtRjhSitRÞ for two large
particle subgroups. Their mean softness are hSitR ¼ −0.8�
0.2 and 0.8� 0.2 and corresponding mean residence times

FIG. 3. (a) Measured gllðrÞ of large particles around a central
large particle. (b) Measured gsl ðrÞ of small particles around a
central large particle. (c) Numbers of large (blue circle) and small
(green triangle) neighbors within r < 1.2σ as a function of hSitR
(see main text).

FIG. 2. Two unnormalized conditional PDFs, PðtRjhSitRÞ, for
tR with similar hSitR. The red solid and blue dashed lines are
exponential fits, PðtRjhSitRÞ ∼ ð1=t̄RÞe−tR=t̄R , with t̄R ¼ 400 and
270 sec for hSitR ¼ −0.8 and 0.8, respectively; fitting is to the
tails (tR > 200 sec) of the conditional PDFs. Inset shows the
overall PDF, PðhSitRÞ. The solid line is a Gaussian fit. The
subgroups that constitute the conditional PDFs are shaded with
the same colors.
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are t̄R ¼ 400 and 270 sec, respectively. A correlation
between hopping rate (1=t̄R) and softness was also reported
in a 3D Lennard-Jones simulation [18].
The different exponential PðtRjhSitRÞ provide direct

experimental evidence for coexistence of multiple activation
processes in the supercooled colloidal liquid. We measured
t̄R versus hSitR for both species. These functions are well
described (Fig. 4) by quadratic (Supplemental Material [32])
and exponential [t̄R ¼ t̄R0 expðbhSitRÞ] forms. Numerical
fitting gives t̄R0 ¼ 332, and b ¼ −0.22 for large particles,
and t̄R0 ¼ 186, and b ¼ −0.26 for small ones. The prefactor
t̄R0 is the t̄R at zero softness hSitR ¼ 0.
Using the measured PðtRjhSitRÞ, and PðhSitRÞ, we can

readily compute the unnormalized PðtRÞ for the entire
supercooled liquid sample, as a superposition of different
relaxation channels distinguished by hSitR :

PðtRÞ≡HW
Z

∞

−∞
dhSitRPðhSitRÞPðtRjhSitRÞ: ð3Þ

Here H is the total number of tRs, and W is the bin width
of PðtRÞ. The calculated PðtRÞ accurately reproduces
measurements (black line, Fig. 1), thereby experimentally
demonstrating the origin of nonexponential relaxation
in supercooled liquids with single particle resolution
[14–16,26]. In addition, data from a sample at higher
packing fraction (Supplemental Material [32]) confirmed
that PðtRÞ is more stretched in more strongly supercooled
samples and that the decomposition into exponential
channels is still valid.
Finally, we estimate the activation energy barriers and

distribution using measurements and a Kramers’ reaction
rate model [31,46]. Here the activation energy can be
understood as the dynamic free energy due to direct
interactions and entropy from neighboring particles
[47–49]. The inset in Fig. 5(a) schematically shows the
dynamic free energy UðxÞ, where x0 and xb are the
metastable and transition states along the reaction coor-
dinate x, respectively. The barrier height is defined as

Eb ≡UðxbÞ −Uðx0Þ. In the limit Eb=kBT ≫ 1, Eb is
related to the mean residence time t̄R by

t̄R ≃
2πkBT

Dsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00

0jU00
bj

p exp

�
Eb

kBT

�
; ð4Þ

where Dsh is the short-time particle diffusion coefficient,
U00

0 ≡ ½d2UðxÞ=dx2�jx¼x0 and U00
b ≡ ½d2UðxÞ=dx2�jx¼xb are

the second derivatives of UðxÞ at x ¼ x0 and x ¼ xb,
respectively. This equation has been shown to be accurate
in colloid experiments when Eb ≥ 6kBT [50,51].
To use Eq. (4), one also needsDsh,U00

0 , andU
00
b. For large

particles, we measured Dsh ≃ 0.04 μm2 s−1 at 0.1 ms,
which is one-quarter of its measured bare diffusivity
D0 ≃ 0.16 μm2 s−1. For small particles, D0 was measured,
and the same ratio Dsh=D0 assumed. To determine the
potential curvature, we assume the distribution of particle
position during a tR follows the Boltzmann distribution,
Pðx − x0Þ ¼ exp½Uðx0Þ − UðxÞ=kBT�, and we approximate
UðxÞ around x0 to be harmonic,Uðx − x0Þ ¼ 1

2
U00

0ðx − x0Þ2
(Figs. 14, 15 in Supplemental Material [32]). U00

0 ¼
3.2� 1.0 × 10−5 and 1.5� 0.5 × 10−5 Nm−1, for large
and small particles, respectively. We did not measure
U00

b, due to statistics. Fortunately, Eb is rather insensitive
to U00

b; we assumed U00
0 ≈ jU00

bj.
We thus estimate Eb as a function of hSitR : Eb=kBT ¼

E0=kBT þ fhSitR , with E0=kBT ¼ 12.8, f ¼ −0.21 for
large-, and E0=kBT ¼ 11.0, f ¼ −0.26 for small particles
[Fig. 5(a)]. These Eb’ s are in the same range as simulations
[18,49,52] when supercooled behavior starts to emerge.
The mean barrier height for large particles is 1.8kBT more
than small particles; larger particles are more arrested in the
bidisperse system [53]. Combining PðhSitRÞ and EbðhSitRÞ
results, we obtain the probability distribution PðEbÞ of
activation energy barriers [Fig. 5(b)].
To conclude, we experimentally demonstrated that soft-

ness is effective in classifying particle-hopping frequency
in thermal, supercooled colloidal liquids. Particles with
the same softness had local structural environments similar
enough to give rise to exponential relaxation with a single
activation time. We further demonstrated that the measured

FIG. 4. (a) Measured t̄R as a function of hSitR , for large (black
squares) and small (red circles) particles. Solid and dashed lines
are exponential fits (see main text). The error bars indicate the
standard deviations.

FIG. 5. (a) Estimated Eb as a function of hSitR for both species.
Inset: Schematic of the barrier-crossing activation process.
(b) PðEbÞ of activation energy barriers.
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combination of exponential distributions produces the
observed nonexponential relaxation behavior of the whole
sample, and we estimated activation energy barriers and
their distribution. These demonstrated capabilities in a
thermal system represent first experimental steps towards
exploration of thermal supercooled colloidal liquids and
glasses, i.e., in a way that permits simultaneous access to
key structural, dynamical, and thermodynamic information.
Equilibrium and nonequilibrium studies under a range of
interesting conditions, including varying density and fra-
gility, during aging, and under shear should be possible.
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