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We show that the coupling of homogeneous Heisenberg spin-1=2 ladders in different phases leads to the
formation of interfacial zero energy Majorana bound states. Unlike Majorana bound states at the interfaces
of topological quantum wires, these states are void of topological protection and generally susceptible to
local perturbations of the host spin system. However, a key message of our Letter is that, in practice, they
show a high degree of resilience over wide parameter ranges which may make them interesting candidates
for applications.
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Introduction.—The Majorana fermion has become one
of the most important fundamental quasiparticles of con-
densed matter physics. Besides its key role as a building
block in correlated quantum matter, much of this interest is
motivated by perspectives in quantum information [1–3].
Majorana qubits have unique properties which make them
ideal candidates for applications in, e.g., stabilizer code
quantum computation [4]. Current experimental attempts to
isolate and manipulate Majorana bound states (MBSs)
focus on interfaces between distinct phases of symmetry
protected topological (SPT) quantum matter. These
material platforms have the appealing property that
MBSs are protected against local perturbations by princi-
ples of topology. In practice, however, topological protec-
tion may play a lesser role than one might hope, and various
obtrusive aspects of realistic quantum materials appear
to challenge the isolation and manipulation of MBSs.
Specifically, in topological quantum wires based on the
hybrid semiconductor-superconductor platform [5] or on
coupled ferromagnetic atoms [6], all relevant scales are
confined to narrow windows in energy. In this regard,
proposals to realize MBSs in topological insulator nano-
wires [7] may offer superior solutions. However, these
realizations require a high level of tuning of external
parameters, notably of magnetic fields, and may be met
with their own difficulties.
In this Letter, we suggest an alternative hardware plat-

form for the isolation of zero-energy MBSs. Our proposal
does not engage topology. Specifically, local perturbations

of the microscopic Hamiltonian may induce nonlocal
correlations between the emergent Majorana quantum
particles. However, we argue below that in practice this
problem is less drastic than one might fear and that the
current architecture may grant a high level of effective
protection. The numerical evidence provided below cer-
tainly points in this direction.
The material platform we suggest is based on spin ladder

materials. Their phases can be classified by combining
standard Landau-Ginzburg symmetry breaking with the
presence of SPT order [8,9]. Here, we show that combining
ladders in different phases provides a systematic means to
generating interface MBSs. The formal bridge between the
physics of spin ladders and that of Majorana fermions is
provided by a two-step mapping, first, representing the spin
degrees of freedom by bosons, followed by refermioniza-
tion of the latter into an effective Majorana theory [10]. We
will discuss how numerous spin ladder properties that are
difficult to access in the spin language are made simple and
transparent in the Majorana representation. In particular,
SU(2) invariant spin ladders with two legs are described by
a theory of four massive Majorana fermions, comprising a
triplet and a singlet of different masses, together with
a global parity constraint. The ground state degeneracies of
the spin systems are then encoded entirely in zero-energy
MBSs localized on the boundaries of the system.
Two surprising findings arise from this Majorana rep-

resentation. The first is that additional ground state degen-
eracies can appear in inhomogeneous ladders, where the
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spin-spin interactions vary spatially along the ladder. In the
fermionic language, these degeneracies manifest them-
selves in new MBSs appearing at the phase boundaries
via the Jackiw-Rebbi mechanism [11], according to which
a sign change in the fermion mass creates a zero mode. This
may happen even if all of the bulk phases composing the
ladder do not support MBSs on their own. The second
finding is that zero-energy MBSs exist only if the spatial
variation of spin couplings about the boundary is suffi-
ciently gentle (a few lattice sites, in practice). The spatial
smoothness across the interface is required to stabilize the
mapping onto a continuum description and to prevent the
coupling of distant MBSs via higher-energy states [12].
This condition manifests the lack of topological protection.
(For other zero energy modes in topologically trivial
phases, see Refs. [13–17].) However, we present numerical
evidence that these MBSs are, nonetheless, close to zero
energy over parametrically wide regions.
Spin ladders.—Ladder geometries provide an important

viewport on the physics of strongly correlated electron
systems [18] and are a research focus of condensed matter
physics in their own regard. They are close enough to being
one dimensional (1D) that powerful theoretical techniques
can be deployed in their understanding, running the gamut
from field theory [10,19–21] andBethe ansatz [22] to density
matrix renormalization group (DMRG) [23–28]. However,
they are also far enough removed from 1D that they capture
the physics of two-dimensional systems. Here, we focus on
ladders where the fluctuations of spin-1=2 degrees of free-
dom are dominant (e.g., SrCu2O3 [29]) over ladders where
charge degrees aremobile (e.g., Sr14−xCaxCu24O41 [30]). For
concreteness, we consider the two-leg ladder Hamiltonian

H ¼ J
X
l¼1;2

XN−1

r¼1

Sl;r · Sl;rþ1 þ J⊥
XN
r¼1

S1;r · S2;r

þ J×
XN−1

r¼1

ðS1;r · S1;rþ1ÞðS2;r · S2;rþ1Þ; ð1Þ

where Sal;r is the a ¼ x, y, z spin-1=2 operator located on leg
l and rung r of the ladder. The exchange parameters J ≔
1; J⊥; J× characterize leg, rung, and plaquette interactions,
respectively. For uncoupled Heisenberg chains, the total spin
of each leg would be conserved, and we could work in a
representation where Szl ¼ P

rS
z
l;r are good quantum num-

bers. Assuming an even number N of sites per chain, both
Szl ∈ Z are integer valued. The coupling J⊥ exchanges spin
in integer units, Sz1 → Sz1 � 1; Sz2 → Sz2 ∓ 1, violating the
conservation of the individual Szl, but still constraining the
even and odd combinations, Sz� ¼ Sz1 � Sz2, to have identical
parity,

Szþ ≡ Sz−ðmod2Þ: ð2Þ

Thus, we expect an effective fermionized theory of the
system to display a U(1) symmetry reflecting the conserva-
tion of Szþ plus a Z2 parity condition implementing (2). The
latter introduces correlations between the Szþ and the Sz−
sectors and will play a key role throughout.
Phase diagram.—Depending on the couplings J⊥, J×,

the Hamiltonian (1) supports different phases. For strong
positive rung interaction J⊥ and weak plaquette interaction
J×, the formation of rung singlets (RS) is favored, cf. the
lower right part of Fig. 1. For strong negative couplings J⊥,
rung triplets are formed instead, and effectively implement
an S ¼ 1 Haldane-Heisenberg chain (Haldane phase, H).
For strong J×, one may anticipate “valence bond solids”
(VBSs) distinguished by different types of periodically
repeated intrachain dimerization, VBSþ and VBS− (see
Fig. 1). While the existence of different dimerization
patterns is relatively easy to anticipate, it takes more effort
to determine the symmetries characterizing them, the
respective order parameters, the ground state degeneracies,
and the phase boundaries. For example, the Haldane phase
is an SPT phase without a local order parameter. It exhibits
a fourfold ground state degeneracy due to two spin-1=2
degrees of freedom dangling at the boundaries. In particu-
lar, the identification of the symmetries of the VBS phases
is a nontrivial matter [31,32]. The boundaries between
the phases as well as the ensuing ground state degeneracies
can be established via DMRG simulations [12]: in Fig. 1,
we present the phase diagram and, in Table I, the ground
state degeneracies.
The presence of distinct dimerization patterns also

provides a first clue as to the formation of zero energy
degrees of freedom if chains of competing order are
coupled by interfaces of sufficiently smooth variation.
As an example, consider the RS–VBS−–RS setup in
Fig. 2. The VBS− chain breaks a translational Z2 symmetry
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FIG. 1. Phase diagram for the Hamiltonian (1) obtained from
SU(2) DMRG simulations of a 100 × 2 site ladder with bond
dimension χ ¼ 1500 states. The red (blue) phase boundary shows
the critical line with Majorana fermion mass mt ¼ 0 (ms ¼ 0).
Inset figures show schematic representations of singlet (blue) and
triplet (red) bond order within each phase, and the corresponding
signs of mt and ms.
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via the choice of the links harboring singlet configurations
(indicated as blue ovals). If the interface is sharp, one such
configuration is rigidly pinned between two RS phases, and
the ground state is unique. However, for a smooth interface,
dimerization patterns of either parity can be put at no
difference in energy (cf. the bottom part of the figure). This
leads to a Z2 ground state degeneracy between phases
whose ground states are individually nondegenerate.
Majorana representation.—All the structures and phe-

nomena alluded to above afford a simple and surprisingly
quantitative description in a language of Majorana fer-
mions. The passage to this representation involves the
Abelian bosonization [33] of the spin ladder as an inter-
mediate step. In a second step, the bosonic degrees of
freedom are mapped to an equivalent system of Majorana
fermions [10]. Within the bosonized framework, smooth
and rapid changes of the spin magnetization in the
interaction terms are represented as gradient (“current-
current”) and transcendental (“massive”) perturbations of
the boson fields, respectively [12]. Within the fermion
language, these, in turn, correspond to interaction terms and
bilinear fermion operators, where, crucially, the former turn
out to be irrelevant in a renormalization group sense. This
means that, perhaps counterintuitively, the spin ladder is
represented by a system of two noninteracting fermion
fields, representing the sum and the difference S� of the
magnetization, respectively. The fermion bilinears describe
scattering between left and right moving fermions together
with effectively superconducting correlations in the Sz−
sector reflecting the absence of U(1) symmetry. Much as
for the case of topological superconducting wires [2], it
then pays off to switch to a Majorana fermion representa-
tion. As a result, one arrives at the low-energy continuum
Hamiltonian

H ¼
Z

dx

�
−
iv
2
ðξ0R∂xξ

0
R − ξ0L∂xξ

0
LÞ − imsξ

0
Rξ

0
L

−
iv
2
ðξR∂xξR − ξL∂xξLÞ − imtξR · ξL

�
; ð3Þ

where ξ0;1;2;3 are Majorana fields arranged into a singlet, ξ0,
and a triplet, ξ ¼ ðξ1; ξ2; ξ3Þ, subject to masses [10]

mt ∝ 9J×=π2 − J⊥; ms ∝ 9J×=π2 þ 3J⊥: ð4Þ

The doublets ðξ1; ξ2Þ and ðξ0; ξ3Þ represent the Szþ and Sz−
sectors, respectively. In the Majorana language, the Uð1Þ ≃
Oð2Þ symmetry of the Szþ sector is realized as a continuous
rotation symmetry between the mass-degenerate fields
ðξ1; ξ2Þ, and the Z2 symmetry of the Sz− sector via sign
inversion of ξ0;3. Importantly, these Majorana fields are
not independent but are correlated via the spin parity
relation (2). In the present language, the global Sz� quantum
numbers assume the form Szþ ¼ i

P
aξ

2
aξ

1
a=2 and Sz− ¼

i
P

bξ
3
bξ

0
b=2, where

P
a;b is a formal sum over all eigenm-

odes of the system. (In translational invariant cases, these
are momentum modes. However, for systems with boun-
daries or interfaces, the situation becomes more interest-
ing.) Thus, the constraint (2) translates to

exp
�
π
X
a

ξ1aξ
2
a=2

�
¼ exp

�
π
X
b

ξ3bξ
0
b=2

�
; ð5Þ

introducing entanglement between the four Majorana
sectors [12].
Interfacial Majorana states.—In the Majorana represen-

tation, the ground state degeneracy of a phase is diagnosed
via the appearance of MBSs localized at the system’s
boundaries. Here, the vacuum can be represented as a
fictitious Majorana system with an infinitely large negative
mass [34]. A vacuum interface of a system with a bulk
positive mass then amounts to the zero crossing of a
spatially dependent mass function mðxÞ, where the
Jackiw-Rebbi mechanism implies the presence of a zero-
energy MBS at each end. Since two MBSs define a fermion
Hilbert space of dimension two, prior to imposing the
parity constraint (5), the ground state degeneracy of a
system of definite ðJ×; J⊥Þ is given by d ¼ dþd−, dþ ¼
22ΘðmtÞ, d− ¼ 2ΘðmtÞþΘðmsÞ, where Θ is the Heaviside
function, and we use Eq. (4). For d > 1, (5) then implies
a factor of 2 reduction in the actually realized ground state
degeneracy, d → d=2. This integer agrees exactly with the
DMRG results listed in Table I. The same ground state
degeneracies also follow from the bosonized formulation
(Sec. II of Ref. [12]) from a truncated conformal space
approach [35,36] for sine-Gordon-like models [37–51].
What happens at interfaces between ladders of different

symmetry can now be understood in equally straightfor-
ward ways. Let us, then, return to the RS–VBS−–RS
hybrid, see Fig. 2. Provided the interface varies smoothly
enough, the system is described by the Majorana theory
with mt < 0 but with ms changing from positive values to
negative and back. Thus, we have MBSs at both interfaces
with spatial extension determined by the width of
the interface region. Naively, one might think that the
same principle secures the existence of MBSs in the
complementary case of VBS−–RS–VBS− hybrids as well.

TABLE I. Phases of the spin model, the signs of their fermion
masses, mt=ms, the ground state degeneracies, d�, of their even
or odd sectors (Sz�) before the parity restriction (2) is applied, and,
finally, their overall actual ground state degeneracies from SU(2)
DMRG.

Phase mt=ms dþ=d− Ground state degeneracies

H þ=− 4=2 4
RS −=þ 1=2 1
VBSþ þ=þ 4=4 8
VBS− −=− 1=1 1
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However, there is a catch: The above argument does not
make reference to the parity constraint (5). In the
RS–VBS−–RS case, since ms > 0 in the outer RS seg-
ments, MBSs will not only exist at the internal interfaces
but also at the outer vacuum boundaries, cf. Fig. 2(b). This
implies that changes in the occupation of the internal MBS
system can be compensated by the outer MBS system,
which may act as a “parity sink” to restore the condition (5).
In concrete terms, theþ sector of the RS–VBS−–RS ladder
is even parity and has a unique ground state as dþ ¼ 1 for
the RS and VBS− segments. On the other hand, the− sector
is nominally fourfold degenerate (as d− ¼ 2 for each RS
segment), but only two of the four states have even parity,
thus, leaving only two allowed states once we combine the
� sectors.
In Fig. 3, we present DMRG results showing that the

RS–VBS−–RS ladder, indeed, has a doubly degenerate
ground state for smooth interfaces. If J⊥ and J× defining
these phases vary too sharply, the ground state remains
unique. We explain why this is so field theoretically in
Sec. III of [12]. However, once the scale of variation
extends over just a few lattice sites, one rapidly approaches
a twofold degenerate ground state. We also note that the
energy gap protecting the ground state degeneracy is rather
large for the example in Fig. 3. It is remarkable that MBSs
are generated in the RS–VBS−–RS example, where none
of the individual parts, VBS− or RS, support such states.
These MBSs also provide a means to distinguish two
different SPT-trivial phases, cf. Refs. [31,32]. The situation
is rather different for the VBS−–RS–VBS− system. Since
one of the two fermion states formed from the central MBS
pair is parity blocked, MBSs are effectively removed from
the zero energy Hilbert space [52]. See Sec. IV. B. 2 of [12]
for verification of this via DMRG. In this way, the parity
constraint trumps the Jackiw-Rebbi principle.
Interfaces between phases of enriched symmetry define

higher-dimensional MBS systems. As an example, consider

the RS–H–RS hybrid. Although the ground state degen-
eracy of the centralH segment (the outer RS phases) is only
fourfold (unique), the interfaces harbor a potential 32D
zero-energy space, with four MBSs at either side of the H
segment since four masses change sign upon crossing from
one phase into the other. Parity, as in the RS–VBS−–RS
ladder, reduces this by one-half (see Sec. IV. B. 3 of [12]).
Reality check.—The above constructions demonstrate

that spin ladder materials provide a remarkably rich plat-
form for the isolation of zero energy MBSs, with sizeable
energy gaps to higher-lying states. In view of the general
interest in MBSs, it is imperative to ask how our non-
topological MBSs fare in comparison to topologically
protected MBSs. At first sight, the absence of topological
protection appears to be a crucial setback. However, at
present, the probably most obtrusive effect hampering
Majorana device functionality is the buildup of long-range
MBS hybridizations. In topological devices, the hybridi-
zation exponentially approaches zero with increasing dis-
tance but can, nonetheless, be large in practice. For
example, in hybrid semiconductor wires, topological pro-
tection crucially relies on the rather tiny superconducting
proximity gaps [2,53–56]. In the present setup, the lack of
topological protection manifests itself in long-range corre-
lations between MBSs when short range correlations of
the underlying spin chains are changed (in particular, the
interface roughness). However, the degrees of freedom
behind such changes are highly inert in realistic systems
since they require energy scales comparable to the
exchange couplings. Even though these energy scales do
not grow with system size, they can be sufficiently large to
provide efficient MBS protection at low temperatures.
Outlook.—A promising aspect of our approach is that it

brings a plethora of material platforms into play. While we
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FIG. 3. Finite size scaling of low-energy SU(2) DMRG
eigenstates in RS–VBS−–RS ladders of total length L. Blue
and red indicate singlet and triplet states (S ¼ 0=1) (the ground
state is not shown). We use J ¼ 1, with the other couplings varied
as J⊥ðxÞ ¼ 4

3
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3
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and x� ¼ ðL� LcÞ=2. The width δx controls the interface
smoothness. The ground state degeneracy develops quickly with
increasing δx and is only marginally affected by the length Lc of
the VBS− region (see Sec. IV of [12]).
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FIG. 2. Bond formation patterns when parameters ðJ×; J⊥Þ are
varied (in green) in order to form a RS–VBS−–RS ladder. (a) For
sudden parameter changes at interfaces. (b) For smooth parameter
changes, Jackiw-Rebbi zero modes emerge when the singlet
mass, ms, changes sign (lowest sketch).
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have focused on spin ladders, similar considerations apply
to many quasi-1D materials, in particular, those that admit a
bosonization treatment, e.g.,N-leg Heisenberg ladders with
SU(2) spin symmetry [18,27,57] or a more general SUðMÞ
symmetry [19,28,58], coupled chains of itinerant electrons
[21,59–61], or coupled Luttinger liquid systems [62,63]. In
addition, our setup directly comes with an intrinsic source
of strong entanglement. Indeed, the Majorana parity con-
straint (5) plays a similar role to the strong Coulomb
charging energy [64–67] in mesoscopic MBS systems,
where a related parity constraint implies qubit functionality
[68,69]. The question of how this entanglement mechanism
may be turned into an operational resource, and how the
MBSs discussed here can be probed and/or manipulated, is
an interesting subject for future study.
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[9] N. Schuch, D. Pérez-García, and I. Cirac, Classifying
quantum phases using matrix product states and projected
entangled pair states, Phys. Rev. B 84, 165139 (2011).

[10] D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik,
Antiferromagnetic spin ladders: Crossover between spin
S ¼ 1=2 and S ¼ 1 chains, Phys. Rev. B 53, 8521 (1996).

[11] R. Jackiw and C. Rebbi, Solitons with fermion number 1=2,
Phys. Rev. D 13, 3398 (1976).

[12] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.027201 for addi-
tional details on the bosonized theory and on DMRG
simulations, an in-depth explanation of why sharp interfaces
will gap out MBSs, and alternative computations of the
ground state degeneracies within the bosonized formalism.

[13] Z. Yan, R. Bi, and Z. Wang, Majorana Zero Modes
Protected by a Hopf Invariant in Topologically Trivial
Superconductors, Phys. Rev. Lett. 118, 147003 (2017).

[14] C. Chan, L. Zhang, T. F. J. Poon, Y.-P. He, Y.-Q. Wang, and
X.-J. Liu, Generic Theory for Majorana Zero Modes in 2D
Superconductors, Phys. Rev. Lett. 119, 047001 (2017).

[15] Z. Yan, F. Song, and Z. Wang, Majorana Corner Modes in a
High-Temperature Platform, Phys. Rev. Lett. 121, 096803
(2018).

[16] T. H. Hsieh, H. Ishizuka, L. Balents, and T. L. Hughes, Bulk
Topological Proximity Effect, Phys. Rev. Lett. 116, 086802
(2016); T. H. Hsieh, Y.-M. Lu, and A.W.W. Ludwig,
Topological bootstrap: Fractionalization from Kondo cou-
pling, Sci. Adv. 3, e1700729 (2017).

[17] V. Kaladzhyan, C. Bena, and P. Simon, Topology from
triviality, Phys. Rev. B 97, 104512 (2018).

[18] E. Dagotto and T. M. Rice, Surprises on the way from one-
to two-dimensional quantum magnets: The ladder materials,
Science 271, 618 (1996).

[19] P. Lecheminant and A. M. Tsvelik, Two-leg SUð2nÞ spin
ladder: A low-energy effective field theory approach, Phys.
Rev. B 91, 174407 (2015).

[20] R. Konik and A.W.W. Ludwig, Exact zero-temperature
correlation functions for two-leg Hubbard ladders and
carbon nanotubes, Phys. Rev. B 64, 155112 (2001).

[21] R. M. Konik, T. M. Rice, and A. M. Tsvelik, Doped Spin
Liquid: Luttinger Sum Rule and Low Temperature Order,
Phys. Rev. Lett. 96, 086407 (2006).

[22] Y. Wang, Exact solution of a spin-ladder model, Phys. Rev.
B 60, 9236 (1999); M. T. Batchelor and M. Maslen, Exactly
solvable quantum spin tubes and ladders, J. Phys. A 32,
L377 (1999).

PHYSICAL REVIEW LETTERS 122, 027201 (2019)

027201-5

https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevB.84.201105
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.53.8521
https://doi.org/10.1103/PhysRevD.13.3398
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.027201
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.027201
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.027201
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.027201
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.027201
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.027201
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.027201
https://doi.org/10.1103/PhysRevLett.118.147003
https://doi.org/10.1103/PhysRevLett.119.047001
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.116.086802
https://doi.org/10.1103/PhysRevLett.116.086802
https://doi.org/10.1126/sciadv.1700729
https://doi.org/10.1103/PhysRevB.97.104512
https://doi.org/10.1126/science.271.5249.618
https://doi.org/10.1103/PhysRevB.91.174407
https://doi.org/10.1103/PhysRevB.91.174407
https://doi.org/10.1103/PhysRevB.64.155112
https://doi.org/10.1103/PhysRevLett.96.086407
https://doi.org/10.1103/PhysRevB.60.9236
https://doi.org/10.1103/PhysRevB.60.9236
https://doi.org/10.1088/0305-4470/32/33/102
https://doi.org/10.1088/0305-4470/32/33/102


[23] S. R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[24] U. Schollwöck, The density-matrix renormalization group,
Rev. Mod. Phys. 77, 259 (2005).

[25] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. (Amsterdam)
326, 96 (2011).

[26] R. M. Noack, S. R. White, and D. J. Scalapino, The ground
state of the two-leg Hubbard ladder a density-matrix
renormalization group study, Physica (Amsterdam) 270C,
281 (1996).

[27] F. B. Ramos and J. C. Xavier, N-leg spin-S Heisenberg
ladders: A density-matrix renormalization group study,
Phys. Rev. B 89, 094424 (2014).

[28] A. Weichselbaum, S. Capponi, P. Lecheminant, A. M.
Tsvelik, and A. M. Läuchli, Unified phase diagram of
antiferromagnetic SU(N) spin ladders, Phys. Rev. B 98,
085104 (2018).

[29] M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka,
Observation of a Spin Gap in SrCu2O3 Comprising
Spin-1=2 Quasi-1D Two-Leg Ladders, Phys. Rev. Lett.
73, 3463 (1994).

[30] T. Vuletić, B. Korin-Hamzić, T. Ivek, S. Tomić, B.
Gorshunov, M. Dressel, and J. Akimitsu, The spin-ladder
and spin-chain system ðLa; Y;Sr;CaÞ14Cu24O41: Elec-
tronic phases, charge and spin dynamics, Phys. Rep. 428,
169 (2006).

[31] Y. Fuji, F. Pollmann, and M. Oshikawa, Distinct Trivial
Phases Protected by a Point-Group Symmetry in Quantum
Spin Chains, Phys. Rev. Lett. 114, 177204 (2015).

[32] Y. Fuji, Effective field theory for one-dimensional valence-
bond-solid phases and their symmetry protection, Phys.
Rev. B 93, 104425 (2016).

[33] S. Eggert and I. Affleck, Magnetic impurities in half-
integer-spin Heisenberg antiferromagnetic chains, Phys.
Rev. B 46, 10866 (1992).

[34] P. Lecheminant and E. Orignac, Magnetization and dime-
rization profiles of the cut two-leg spin ladder, Phys. Rev. B
65, 174406 (2002).

[35] V. P. Yurov and Al. B. Zamolodchikov, Truncated conformal
space approach to scaling Lee-Yang model, Int. J. Mod.
Phys. A 05, 3221 (1990); Truncated-fermionic-space ap-
proach to the critical 2D Ising model with magnetic field,
Int. J. Mod. Phys. A 06, 4557 (1991).

[36] A. J. A. James, R. M.Konik, P. Lecheminant, N. J. Robinson,
and A.M. Tsvelik, Non-perturbative methodologies for low-
dimensional strongly-correlated systems: From non-Abelian
bosonization to truncated spectrum methods, Rep. Prog.
Phys. 81, 046002 (2018).

[37] G. Feverati, F. Ravanini, and G. Takács, Truncated con-
formal space at c ¼ 1, nonlinear integral equation and
quantization rules for multi-soliton states, Phys. Lett. B 430,
264 (1998).

[38] G. Feverati, F. Ravanini, and G. Takács, Scaling functions
in the odd charge sector of sine-Gordon/massive Thirring
theory, Phys. Lett. B 444, 442 (1998).

[39] G. Feverati, F. Ravanini, and G. Takács, Non-linear integral
equation and finite volume spectrum of sine-Gordon theory,
Nucl. Phys. B540, 543 (1999).

[40] Z. Bajnok, C. Dunning, L. Palla, G. Takács, and F. Wágner,
SUSY sine-Gordon theory as a perturbed conformal field
theory and finite size effects, Nucl. Phys. B679, 521 (2004).

[41] Z. Bajnok, L. Palla, and G. Takács, Finite size effects in
boundary sine-Gordon theory, Nucl. Phys. B622, 565 (2002).

[42] Z. Bajnok, L. Palla, and G. Takács, The spectrum of
boundary sine-Gordon theory, in Statistical Field Theories
(Springer, Dordrecht, 2002), pp. 195–204.

[43] Z. Bajnok, L. Palla, G. Takács, and F. Wágner, Non-
perturbative study of the two-frequency sine-Gordon model,
Nucl. Phys. B601, 503 (2001).

[44] Z. Bajnok, L. Palla, G. Takács, and F. Wágner, The k-folded
sine-Gordon model in finite volume, Nucl. Phys. B587, 585
(2000).

[45] G. Takács and F. Wágner, Double sine-Gordon model
revisited, Nucl. Phys. B741, 353 (2006).

[46] G. Zs. Tóth, A nonperturbative study of phase transitions in
the multi-frequency sine-Gordon model, J. Phys. A 37, 9631
(2004).

[47] T. Pálmai and G. Takács, Diagonal multisoliton matrix
elements in finite volume, Phys. Rev. D 87, 045010 (2013).

[48] R. M. Konik, Exciton Hierarchies in Gapped Carbon Nano-
tubes, Phys. Rev. Lett. 106, 136805 (2011).

[49] R. M. Konik, M. Y. Sfeir, and J. A. Misewich, Predicting
excitonic gaps of semiconducting single-walled carbon
nanotubes from a field theoretic analysis, Phys. Rev. B 91,
075417 (2015).

[50] Z. Bajnok, L. Palla, and G. Takacs, Boundary states and
finite size effects in sine-Gordon model with Neumann
boundary condition, Nucl. Phys. B614, 405 (2001).

[51] Z. Bajnok, L. Palla, G. Takacs, and G. Zs. Toth, The spectrum
of boundary states in sine-Gordon model with integrable
boundary conditions, Nucl. Phys. B622, 548 (2002).

[52] One may change the occupation of the MBS pair only at the
expense of populating high-energy states via a mechanism
similar to the “quasiparticle poisoning” [2] of topological
Majorana wires.

[53] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire
devices, Science 336, 1003 (2012).

[54] W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth,
P. Krogstrup, J. Nygård, and C. M. Marcus, Hard gap in
epitaxial semiconductor-superconductor nanowires, Nat.
Nanotechnol. 10, 232 (2015).

[55] A. P. Higginbotham, S. M. Albrecht, G. Kiršanskas, W.
Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J.
Nygård, K. Flensberg, and C. M. Marcus, Parity lifetime
of bound states in a proximitized semiconductor nanowire,
Nat. Phys. 11, 1017 (2015).

[56] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F.
Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, and
C. M. Marcus, Exponential protection of zero modes in
Majorana islands, Nature (London) 531, 206 (2016).

[57] D. C. Cabra, A. Honecker, and P. Pujol, Magnetization
plateaux in N-leg spin ladders, Phys. Rev. B 58, 6241
(1998).

[58] V. Bois, P. Fromholz, and P. Lecheminant, One-dimensional
two-orbital SUðNÞ ultracold fermionic quantum gases at

PHYSICAL REVIEW LETTERS 122, 027201 (2019)

027201-6

https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/S0921-4534(96)00515-1
https://doi.org/10.1016/S0921-4534(96)00515-1
https://doi.org/10.1103/PhysRevB.89.094424
https://doi.org/10.1103/PhysRevB.98.085104
https://doi.org/10.1103/PhysRevB.98.085104
https://doi.org/10.1103/PhysRevLett.73.3463
https://doi.org/10.1103/PhysRevLett.73.3463
https://doi.org/10.1016/j.physrep.2006.01.005
https://doi.org/10.1016/j.physrep.2006.01.005
https://doi.org/10.1103/PhysRevLett.114.177204
https://doi.org/10.1103/PhysRevB.93.104425
https://doi.org/10.1103/PhysRevB.93.104425
https://doi.org/10.1103/PhysRevB.46.10866
https://doi.org/10.1103/PhysRevB.46.10866
https://doi.org/10.1103/PhysRevB.65.174406
https://doi.org/10.1103/PhysRevB.65.174406
https://doi.org/10.1142/S0217751X9000218X
https://doi.org/10.1142/S0217751X9000218X
https://doi.org/10.1142/S0217751X91002161
https://doi.org/10.1088/1361-6633/aa91ea
https://doi.org/10.1088/1361-6633/aa91ea
https://doi.org/10.1016/S0370-2693(98)00543-7
https://doi.org/10.1016/S0370-2693(98)00543-7
https://doi.org/10.1016/S0370-2693(98)01406-3
https://doi.org/10.1016/S0550-3213(98)00747-0
https://doi.org/10.1016/j.nuclphysb.2003.11.036
https://doi.org/10.1016/S0550-3213(01)00616-2
https://doi.org/10.1016/S0550-3213(01)00067-0
https://doi.org/10.1016/S0550-3213(00)00441-7
https://doi.org/10.1016/S0550-3213(00)00441-7
https://doi.org/10.1016/j.nuclphysb.2006.02.004
https://doi.org/10.1088/0305-4470/37/41/003
https://doi.org/10.1088/0305-4470/37/41/003
https://doi.org/10.1103/PhysRevD.87.045010
https://doi.org/10.1103/PhysRevLett.106.136805
https://doi.org/10.1103/PhysRevB.91.075417
https://doi.org/10.1103/PhysRevB.91.075417
https://doi.org/10.1016/S0550-3213(01)00391-1
https://doi.org/10.1016/S0550-3213(01)00615-0
https://doi.org/10.1126/science.1222360
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nature17162
https://doi.org/10.1103/PhysRevB.58.6241
https://doi.org/10.1103/PhysRevB.58.6241


incommensurate filling: A low-energy approach, Phys. Rev.
B 93, 134415 (2016).

[59] F. H. L. Essler and A.M. Tsvelik, Weakly coupled one-
dimensionalMott insulators, Phys. Rev. B 65, 115117 (2002).

[60] F. L. Pedrocchi, S. Chesi, S. Gangadharaiah, and D. Loss,
Majorana states in inhomogeneous spin ladders, Phys. Rev.
B 86, 205412 (2012).

[61] W. DeGottardi, D. Sen, and S. Vishveshwara, Topological
phases, Majorana modes and quench dynamics in a spin
ladder system, New J. Phys. 13, 065028 (2011).

[62] J. C. Y. Teo and C. L. Kane, From Luttinger liquid to
non-Abelian quantum Hall states, Phys. Rev. B 89,
085101 (2014); Y. Fuji and P. Lecheminant, Non-Abelian
SUðN − 1Þ-singlet fractional quantum Hall states from
coupled wires, Phys. Rev. B 95, 125130 (2017).

[63] H.-C. Jiang, Z.-X. Li, A. Seidel, and D.-H. Lee, Symmetry
protected topological Luttinger liquids and the phase tran-
sition between them, Sci. Bull. 63, 753 (2018).

[64] L. Fu, Electron Teleportation via Majorana Bound States in
a Mesoscopic Superconductor, Phys. Rev. Lett. 104, 056402
(2010).

[65] B. Béri and N. R. Cooper, Topological Kondo Effect with
Majorana Fermions, Phys. Rev. Lett. 109, 156803 (2012).

[66] A. Altland and R. Egger, Multiterminal Coulomb-Majorana
Junction, Phys. Rev. Lett. 110, 196401 (2013).

[67] B. Béri, Majorana-Klein Hybridization in Topological
Superconductor Junctions, Phys. Rev. Lett. 110, 216803
(2013).

[68] S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg,
Majorana box qubits, New J. Phys. 19, 012001 (2017).

[69] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.
Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y.
Oreg, C. M. Marcus, and M. H. Freedman, Scalable designs
for quasiparticle-poisoning-protected topological quantum
computation with Majorana zero modes, Phys. Rev. B 95,
235305 (2017).

PHYSICAL REVIEW LETTERS 122, 027201 (2019)

027201-7

https://doi.org/10.1103/PhysRevB.93.134415
https://doi.org/10.1103/PhysRevB.93.134415
https://doi.org/10.1103/PhysRevB.65.115117
https://doi.org/10.1103/PhysRevB.86.205412
https://doi.org/10.1103/PhysRevB.86.205412
https://doi.org/10.1088/1367-2630/13/6/065028
https://doi.org/10.1103/PhysRevB.89.085101
https://doi.org/10.1103/PhysRevB.89.085101
https://doi.org/10.1103/PhysRevB.95.125130
https://doi.org/10.1016/j.scib.2018.05.010
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.109.156803
https://doi.org/10.1103/PhysRevLett.110.196401
https://doi.org/10.1103/PhysRevLett.110.216803
https://doi.org/10.1103/PhysRevLett.110.216803
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305

