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Time-domain interferometry (TDI) is a promising method to characterize spatial and temporal
correlations at x-ray energies, via the so-called intermediate scattering function and the related dynamical
couple correlations. However, so far, it has only been analyzed for classical target systems. Here, we
provide a quantum analysis, and suggest a scheme that allows us to access quantum dynamical correlations.
We further show how TDI can be used to exclude classical models for the target dynamics, and illustrate our
results using a single particle in a double well potential.

DOI: 10.1103/PhysRevLett.122.025301

Introduction.—Spatial and temporal correlations among
particles are key to the exploration of complex many-body
phenomena. Scattering experiments provide access to
the scattering function Sðp;ωÞ that is proportional to the
cross section for scattering with energy transfer ℏω and
momentum transfer ℏp [1]. It characterizes the evolution of
correlations on timescales ∼1=ω and length scales ∼1=jpj.
In practice, knowledge of the correlations over a broad
range of time and momentum transfer scales is desirable,
and various scattering techniques such as x-ray [2,3] and
neutron [4] scattering can be used to access complementary
energy and momentum transfer scales. Similarly, depend-
ing on the properties of the scatterer, it can be favorable to
characterize correlations directly in the time domain, via
the intermediate scattering function (ISF)

Sðp; t1; t2Þ ¼
Z
V
Gðr; t1; t2Þeip·rd3r; ð1Þ

with the dynamical couple-correlation function (DCF)

Gðr; t1; t2Þ ¼
Z
V
Tr½μρ̂ðr0; t1Þρ̂ðr0 þ r; t2Þ�d3r0: ð2Þ

Here, the system described by the density matrix μ covers
the volume V, and ρ̂ðr; tÞ is the particle-density operator.
The DCF quantifies the spatial and temporal correlations
between particles at ðr; t1Þ and ðr0 þ r; t2Þ.
A particular technique to access the ISF is the so-called

time-domain interferometry (TDI) [5–11] (see Fig. 1 for
the extended scheme used here). It has recently been
suggested as a promising candidate for x-ray free electron
laser experiments (see page 84 of Ref. [2]; note that the
general feasibility of free-electron-laser experiments with
Mössbauer nuclei has already been demonstrated in a
different setting [12]). TDI allows one to measure ISF
over much longer times than competing techniques, and it
is essentially background-free even for intense x-ray pulses.

TDI uses filter foils containing long-lived Mössbauer iso-
topes, which are placed in front of and behind the actual
target. The incident x-ray frequency is chosen in resonance
with the Mössbauer nuclear transition. The first foil (which
pictorially can be thought of as a “split unit”) induces two
possible scattering channels for the incoming pulse. The first
prompt channel comprises photons which did not interact
with the nuclei. The photons in the second channel are
delayed in time, due to the interaction with the long-lived
nuclear transition. As a consequence, the photons in the two
channels probe the target at different times t1, t2. After the
interaction, the second Mössbauer foil (“overlap unit”) again
splits each of the two channels into a prompt and a delayed
contribution. This “overlap operation” creates scattering
channels to the detected signal, which were either delayed
in the split unit or in the overlap unit, but not in both, and
thus reach the detector at the same time. For these, it is not
possible to distinguish if the interaction with the target took
place at time t1 or t2, and the interference of these two
pathways leads to temporal modulations of the detection
signal, which in turn provide access to the ISF. Depending
on the chosen Mössbauer species, different momentum and
energy transfer ranges can be accessed [11]. Recently, also a
modified scheme usingMössbauer foils with two resonances
has been suggested [13].
So far, TDI has been analyzed and demonstrated

experimentally [5,10,11,13,15,16] for targets which can
be described by classical mechanics [17]. However, quan-
tum effects change the DCF [1,18], and such quantum
corrections have been theoretically studied [19–22] and
observed in quantum liquids [23,24] or in surface diffusion
[25]. In thermal equilibrium, quantum effects are usually
considered to be restricted to relatively short times of
order ℏ=ðkBTÞ [22]. One obvious solution is to lower the
temperature, which is taken to the extreme in cold-gas
implementations of solid-state dynamics [26,27], where
quantum effects were observed in the response functions
using inelastic light scattering [28]. But more importantly,
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a central research goal of modern x-ray sources is the study
of strongly correlated and quantum materials, in and out of
equilibrium. Their features largely depend on quantum
phenomena (see, e.g., Refs. [29–31]), and they exhibit
correlations over a broad range of temporal and spatial
scales, in particular, out of equilibrium. In this regard, the
nanosecond to millisecond scale is considered very inter-
esting, but hard to access experimentally [32,33]. This
raises the question of whether time-domain techniques can
be used to explore correlations in targets that require a
quantum mechanical treatment, this implying a modifica-
tion of their DCF and ISF by the above mentioned quantum
corrections.
Here we provide a quantum mechanical analysis of TDI,

and suggest a scheme which allows one to measure the ISF
both for quantum and classical targets. In our scheme, the
full ISF is accessed by controlling the interference between
the different scattering channels via their relative phase.
DCF and ISF have different properties for classical and
quantum targets and we show how TDI can be used to
exclude classical models for the targets. Finally, we
illustrate our main results with a minimal model composed
of a single particle hopping between two sites.
Properties of DCF and ISF.—We start with symmetry

properties of DCF and ISF, which will enable us to
distinguish quantummechanical targets from classical ones.
As already noted by van Hove himself in Refs. [1,18], for
quantum systems (subscript qu), the DCF is in general a
complex-valued function due to the noncommutativity of
particle-density operators at different times. It directly
follows from definition (2) that

Gquðr; t1; t2Þ� ¼ Gquð−r; t2; t1Þ; ð3Þ

Squðp; t1; t2Þ� ¼ Squðp; t2; t1Þ: ð4Þ

If the system instead is described by a classical model
(subscript cl), the density of particles is a real valued
function and the quantum mechanical trace is replaced by
a statistical ensemble average in Eq. (2). As a consequence,
the classical DCF is a real-valued function, giving rise to a
different behavior of the ISF under complex conjugation,

Sclðp; t1; t2Þ� ¼ Sclð−p; t1; t2Þ: ð5Þ

Note that not only the sign of p is changed as compared to
the quantum case Eq. (4), but also the order of the time
arguments t1, t2.
Quantum theory of TDI.—We now turn to the analysis of

TDI in the case of a quantum target (see Fig. 1). In addition to
the original TDI proposal, we assume that the relative phase
ϕ between the scattering channels can be controlled. As we
will show below, this enables control of the interference
between the different scattering channels, and thereby
provides access to the full ISF. For Mössbauer foils, the
required phase control is possible with sub-Ångstrom
precision on a nanosecond scale using mechanical displace-
ments of the split foil, as demonstrated in Ref. [14] [see
Fig. 1(b)]. Related precise control of mechanical motion has
also been demonstrated in Ref. [34]. In order to simplify the
discussion, we consider a setup in which the split and the
overlap units separate incoming pulses into two identical
copies with mutual delay Δt. One possible realization for
this is a split-and-delay line with a phase plate, see Fig. 1(c).
Behind the overlap unit, the signal is temporally separated
into three pulses. The leading (trailing) pulse comprises
those photons which were delayed in none (both) of the split

(a) (b)

(c)

FIG. 1. (a) Schematic setup. The incoming wave packet propagating along k (red) is separated into two parts with a mutual delay by a
split unit. The advanced (violet) component is quasielastically scattered by the target at time t1, while the delayed one (blue) scatters at
t2. Subsequently, the light scattered in direction kþ p passes an overlap unit, which acts identical to the split unit. The central
component of the outgoing signal contains two indistinguishable contributions, arising from photons which scattered at time t1 or t2,
respectively. In our scheme, a phase shifter ϕ controls the interference of these two contributions in the measured intensity of the
scattered light, and thus enables one to recover the quantum dynamical couple correlation function of the target. (b) If the split and
overlap units are realized using Mössbauer filter foils, then the required phase control is possible using mechanical displacements of the
split foil as demonstrated in Ref. [14]. (c) A generic implementation of the phase control is a split-and-delay line, with a phase plate in
one of the two arms.
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and overlap units, and which interacted at time t1 (t2) with
the target. In contrast, the central pulse contains photons
which were either delayed in the split unit or in the overlap
unit, but not in both. It is therefore not possible to distinguish
if the interaction with the target took place at time t1 or t2. In
the following, wewill concentrate on this part. Note that the
corresponding quantum analysis of the original setup with
Mössbauer foils is given in the Supplemental Material [35].
We proceed by calculating the probability amplitude that

a photon from the central pulse is registered by a detector
placed at positionR at time t, by summing up the detection
amplitudes for the two indistinguishable scattering path-
ways. These evaluate to (j ∈ f1; 2g, see Supplemental
Material [35] for details)

eiω0ðR=c−tÞ

R
eiϕjfðtÞ

Z
V
d3re−ip·rρ̂ðr; tjÞjψi: ð6Þ

As expected, the amplitudes are spherical wave packets
with carrier frequency and envelope fðtÞ identical to those
of the incoming photon. The amplitudes depend on the
target’s density operator at the scattering times and on the
initial state of the target jψi. Here, p is the exchanged
momentum between the photon and the target. The signal
recorded by the detector will be proportional to the
probability of detecting the photon, which in turn is

Pðp; tÞ ∝ fðtÞ2
�X

j¼1;2

Squðp; tj; tjÞ

þ 2fcos½ϕ�SRquðp; t1; t2Þ − sin½ϕ�SIquðp; t1; t2Þg
�
;

ð7Þ
where ϕ ¼ ϕ2 − ϕ1 is the phase difference between the two
scattering pathways. Here and in the following, a super-
script R [I] denotes the real [imaginary] part, such that
Squ ¼ SRqu þ iSIqu. Note that Eq. (7) applies to targets
initially in a pure quantum state. Otherwise, it has to be
averaged over all possible initial states.
As our first main result, we find from Eq. (7) that control

over the relative phase ϕ and the delay Δt enables one to
individually access the real and the imaginary parts of the
ISF as a function of momentum transfer p and time t, as
desired.
Next, in order to extract information about the quantum

or classical nature of the target, we consider the sum Iþ and
the difference I− of the intensities at two opposite
exchanged momenta �p. Using Eq. (7),

I�quðϕ; tÞ ∝ fðtÞ2
�X

j¼1;2

½Squðp; tj; tjÞ � Squð−p; tj; tjÞ�

þ 2fcos½ϕ�½SRquðp; t1; t2Þ � SRquð−p; t1; t2Þ�

− sin½ϕ�½SIquðp; t1; t2Þ � SIquð−p; t1; t2Þ�g
�
: ð8Þ

If a classical model for the target is assumed, such that the
ISF satisfies the symmetry Eq. (5), then Eq. (8) simplifies to

Iþclðϕ; tÞ ∝ fðtÞ2
�X

j¼1;2

Sðp; tj; tjÞ

þ 2 cos½ϕ�SRðp; t1; t2Þ
�
; ð9Þ

I−clðϕ; tÞ ∝ − 2fðtÞ2 sin½ϕ�SIðp; t1; t2Þ: ð10Þ

Thus, recording I� for different values of ϕ enables one to
distinguish quantum or classical symmetries of the target.
If, e.g., I− does not vanish at ϕ ¼ nπ, then the classical
relation Eq. (10) is ruled out. It follows that the ISF of the
target has no inversion symmetry, such that the DCF is a
complex valued function and a quantum model for the
target is needed. In the opposite case, DCF is real valued.
Then, it may still be possible to violate Eq. (9) to exclude a
classical model. However, it is important to note that a real
DCF alone does not imply a classical target. Rather, also
quantum targets may exhibit real valued DCF for particular
parameter choices. This fact is explicitly shown for a
concrete system in the next section.
Model.—In the final part, we illustrate our results with a

single particle in a double well potential. The DCF and ISF
for this simple model can be calculated exactly, explicitly
showing that a nonvanishing imaginary part of the DCF can
be attributed to the existence of quantum coherences. These
coherences arise if the particle is in a coherent super-
position of position eigenstates. However, the reverse is not
true, since we find particular superposition states for which
the DCF is real valued.
We denote the two wells by L and R, and the particle

dynamics is governed by the Hamiltonian

H ¼ −ℏ
Ω
2
ðjLihRj þ jRihLjÞ: ð11Þ

A generic state of the particle at time t in the jLi, jRi
representation is given by the density matrix

μðtÞ ¼
�
PLðtÞ ΓðtÞ
ΓðtÞ� PRðtÞ

�
; ð12Þ

where PLðtÞ½PRðtÞ� are the probabilities of finding the
particle at time t at position L½R� which satisfy the
condition PLðtÞ þ PRðtÞ ¼ 1, while ΓðtÞ is the coherence
coefficient. The DCF calculated for the state (12) is

Gquðd; t1; t2Þ ¼ S2PLðt1Þ þ
i
2
S0Γðt1Þ�; ð13Þ

Gquð−d; t1; t2Þ ¼ S2PRðt1Þ þ
i
2
S0Γðt1Þ; ð14Þ
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Gquð0; t1; t2Þ ¼ C − iS0ΓRðt1Þ; ð15Þ

where S ¼ sin½ΩΔt=2�, C ¼ cos½ΩΔt=2�, S0 ¼ sin½ΩΔt�,
Δt ¼ t2 − t1, and ΓRðt1Þ indicates the real part of Γðt1Þ.
Expressions (13)–(15) are complex valued if ΓRðt1Þ is
nonzero, that is when the particle is in a coherent super-
position of jLi and jRi. On the contrary, a purely imaginary
Γðt1Þ gives a real DCF even though the state is in a quantum
superposition. Thus, we find that a real valued DCF alone
does not imply classical behavior.
The ISF corresponding to (13)–(15) is

Squðp; t1; t2Þ ¼ S2 cos½p · d� þ C2

þ i

�
½PLðt1Þ − PRðt1Þ�S2 sin½p · d�

þ S0

2
½ΓIðt1Þ sin½p · d�

þ ΓRðt1Þðcos½p · d� − 2Þ�
�
; ð16Þ

which evidently satisfies the identity (5) only if ΓRðt1Þ ¼ 0,
consistently with the results for the DCF. It turns out that ΓR

is a constant of motion under the action of Hamiltonian
Eq. (11). This allows us to relate the results better to an
actual experimental implementation, in which it may only
be possible to control the delay Δt, but not t1 itself.
Averaging over t1, we find

Ḡquð�d;ΔtÞ ¼ 1

2
S þ i

2
S0ΓR; ð17Þ

Ḡquð0;ΔtÞ ¼ C − iS0ΓR; ð18Þ

S̄quðp;ΔtÞ ¼ S2 cos½p · d� þ C2

þ i
2
ðcos½p · d� − 2ÞS0ΓR: ð19Þ

As before, the complex nature of the DCF is linked to ΓR.
From Eq. (10), we further find Ī− ¼ 0, such that a classical
model cannot be excluded. But Īþ has a contribution
proportional to ΓR sinϕ, which is at odds with Eq. (9) if
ΓR ≠ 0, such that then a classical model can be excluded.
Summary and discussion.—DCF and ISF have different

properties for quantum and classical systems. The non-
commutativity of particle-density operators at different
times in general leads to imaginary contributions to the
DCF for quantum systems, and DCF and ISF have
different symmetry properties under complex conjugation
for classical and quantum systems. Using the quantum
mechanical analysis presented here, we have shown that
time-domain techniques can be used to measure the
complex-valued ISF. Moreover, the comparison of the
ISF at two opposite values of the exchanged momentum

p in the form Eq. (8) provides access to the symmetry
properties of the system’s ISF, and gives a handle to
exclude classical models for the target. Throughout the
analysis, we used a simplified model for the split and
overlap units, but our results carry over to the case of
Mössbauer filter foils (see Supplemental Material [35]), for
which the required relative-phase control is possible with
the necessary precision [14,34].
While quantum corrections to the DCF already appear in

thermal equilibrium, a suitable preparation of the sample is
expected to induce quantum effects, and to render them
more accessible, e.g., by reducing detrimental averagings in
the measurement. Pulsed laser systems synchronized to the
x rays are under development at most x-ray facilities, and
have also already been demonstrated with Mössbauer
nuclei [36]. Our TDI scheme is not restricted to the
x-ray domain, but could also be used to explore correla-
tions on other timescales and length scales, such as cold-
atom implementations of solid state dynamics [28]. This
requires the availability of suitable split and overlap units,
and a system whose internal dynamics has no resonance in
the spectrum of the probing photon pulse, so that only
quasielastic scattering of the photon is relevant. The
analysis of our simple double-well model could serve as
a starting point for the investigation of related phenomena
in more realistic settings. For example, cold atoms trapped
in atomic lattices serve as quantum simulators for com-
plex solid state phenomena, structured periodic potentials
appear on surfaces of materials, and certain complex
materials may intrinsically offer various quantum states
placed in a periodic potential landscape. Few-particle
systems in single- or double-well potentials have also been
studied directly [37]. Finally, we note that the appearance
of imaginary parts in such quantities poses practical and
interpretative problems [38–40], which could be explored
experimentally using TDI techniques.

This work is part of and supported by the DFG
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