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The exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum
signature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent.
This quantum-classical correspondence has been corroborated for the kicked rotor and the stadium billiard,
which are one-body chaotic systems. The conjecture has not yet been validated for realistic systems with
interactions. We make progress in this direction by studying the OTOC in the Dicke model, where two-
level atoms cooperatively interact with a quantized radiation field. For parameters where the model is
chaotic in the classical limit, the OTOC increases exponentially in time with a rate that closely follows the
classical Lyapunov exponent.
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Quantum chaos tries to bridge quantum and classical
mechanics. The search for quantum signatures of classical
chaos has ranged from level statistics [1,2] and the structure
of the eigenstates [3,4] to the exponential increase of
complexity [5,6] and the exponential decay of the overlap
of two wave packets [7–10]. Recently, the pursuit of
exponential instabilities in the quantum domain has been
revived by the conjecture of a bound on the rate growth of
the out-of-time-ordered correlator (OTOC) [11,12]. First
introduced in the context of superconductivity [13], the
OTOC is now presented as a measure of quantum chaos,
with its growth rate being associated with the classical
Lyapunov exponent. The OTOC is not only a theoretical
quantity, but has also been measured experimentally via
nuclear magnetic resonance techniques [14–17].
The correspondence between the OTOC growth rate and

the classical Lyapunov exponent has been explicitly shown
in two cases of one-body chaotic systems, the kicked rotor
[18] and, after a first unsuccessful attempt [19], the stadium
billiard [20]. It was also achieved for chaotic maps [21]. For
interacting many-body systems, while exponential behav-
iors for the OTOC have been found for the Sachdev-Ye-
Kitaev model [11,22] and for the Bose-Hubbard model
[23,24], a direct demonstration of the quantum-classical
correspondence has not yet been made. Studies in this
direction include [6,25–29] and [30].
Here, we investigate the OTOC for the Dicke model

[31,32]. Comparing with one-body systems, the model is a
step up toward an explicit quantum-classical correspondence
for interactingmany-body systems, since it containsN atoms
interacting with a quantized field.

The Dicke model was originally proposed to explain the
collective phenomenon of super-radiance: the field medi-
ates interatomic interactions, which causes the atoms to
act collectively [31,33]. Super-radiance has been exper-
imentally studied with ultracold atoms in optical cavities
[34–39]. The model has also found applications beyond
super-radiance in various different fields. It has been
employed, for instance, in studies of ground-state and
excited-state quantum phase transitions [33,40–44],
entanglement creation [45], nonequilibrium dynamics
[46–49], quantum chaos [50–53], and monodromy
[54,55]. Recently, the model has received revived atten-
tion due to new experiments with ion traps [56,57] and the
analysis of the OTOC [58,59].
In the classical limit, the Dicke model presents regular

and chaotic regions depending on the Hamiltonian param-
eters and excitation energies [53]. This allows us to
benchmark the OTOC growth against the presence and
absence of chaos. The results in the chaotic region display
three different temporal behaviors: a sinusoidal evolution at
short times, followed by an exponential growth, that holds
up to the saturation of the dynamics. Our approach, based
on the use of an efficient basis for the convergence of the
eigenstates, enables the treatment of systems that are large
enough to reveal the exponential part of the dynamics. We
find that the exponential growth rate is in close agreement
with the classical Lyapunov exponent.
Quantum and classical Hamiltonian.—The Dicke model

has N two-level atoms of level spacing ω0 coupled with a
single mode of a quantized radiation field of frequency ω.
The Hamiltonian is given by
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ĤD ¼ ω

2
ðp̂2 þ q̂2Þ þ ω0Ĵz þ 2

γffiffiffiffiffiffiffiffiffi
N=2

p Ĵxq̂ −
ω

2
; ð1Þ

where ℏ ¼ 1; q̂ ¼ ðâ† þ âÞ= ffiffiffi
2

p
and p̂ ¼ iðâ† − âÞ= ffiffiffi

2
p

are the quadratures of the bosonic field and âðâ†Þ is the
annihilation (creation) operator; γ is the atom-field inter-
action strength; and the collective atomic pseudo-spin

operators, Ĵx;y;z ¼ ð1=2ÞPN
n¼1 σ

ðnÞ
x;y;z, are the sums of the

Pauli matrices for each atom n. The eigenvalue of the total
spin operator Ĵ2 ¼ Ĵ2x þ Ĵ2y þ Ĵ2z is jðjþ 1Þ. The critical

point γc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ð2jÞp ffiffiffiffiffiffiffiffiffi

ωω0
p

=2 marks the transition from a
normal phase (γ < γc) to a super-radiant phase (γ > γc). We
set ω ¼ ω0 ¼ 1 in the illustrations below and work with the
symmetric atomic subspace (j ¼ N=2), where the ground
state lies. The model has two degrees of freedom.
The classical Hamiltonian is built by employing Bloch

coherent states and Glauber coherent states [53,60,61].
The first are given by jzi ¼ ð1þ jzj2Þ−jezĴþjj;−ji, where
z ∈ C and jj;−ji is the ground state for the atoms. The
Glauber coherent states are jαi ¼ e−jαj2=2eαâ† j0i, where
α ∈ C and j0i is the photon vacuum. The canonical
variables ðp; qÞ and ðjz;ϕÞ are given in terms of the
coherent state parameters α ¼ ffiffiffiffiffiffiffiffiffiffiffiðj=2Þp ðqþ ipÞ and z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð1þ jzÞ=ð1 − jzÞ�
p

e−iϕ, respectively. Deriving the
classical Hamiltonian is basically equivalent to replacing
the operators with the canonical variables ðq; pÞ and ðjz;ϕÞ
as q̂ →

ffiffi
j

p
q, p̂ →

ffiffi
j

p
p, Ĵz → jjz, Ĵx → j

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2z

p
cosϕ.

It reads

Hcl
D ¼ j

ω

2
ðp2 þ q2Þ þ jω0jz þ 2jγ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2z

q
q cosϕ: ð2Þ

Since the classical limit is reached for j → ∞, the effective
Planck constant is ℏeff ¼ 1=j.
We denote the energy per particle as ϵ ¼ Hcl

D=j, which is
independent of j. Since the number of bosons in the field is
unlimited, the range of values of ϵ is only limited from
below. The ground-state energy is given by ϵ0ðγÞ ¼ −ω0

for γ ≤ γc and by ϵ0ðγÞ ¼ −ðω0=2Þ½ðγ2c=γ2Þ þ ðγ2=γ2cÞ�
for γ > γc.
With the classical Hamiltonian, we obtain a map of the

degree of chaoticity of the system as a function of the
energy ϵ and the interaction strength γ, as shown in Fig. 1.
The task of drawing the map is quite demanding. For each
value of ϵ and γ, we consider a large sample of initial
conditions distributed homogeneously in the energy shell.
The Lyapunov exponent λcl is evaluated for each initial
condition solving the dynamical equations and the funda-
mental matrix simultaneously [53]. If λcl > 0, the initial
condition is chaotic and for λcl ¼ 0, the initial condition is
regular. The percentage of chaos is defined as the ratio of
the number of chaotic initial conditions over the total
number of initial conditions in the sample. This percent-
age is shown in Fig. 1 with a color gradient: dark indicates

that most initial conditions are regular and light indicates
that most are chaotic. (Notice that one should look only at
the results above the thick solid line that marks the ground
state.) Regularity predominates for γ=γc < 0.6. For
γ=γc > 0.6, most regular trajectories have low energies,
while large energies are associated with chaos. This map
guides our analysis of the OTOC below.
Method.—The OTOC quantifies the degree of noncom-

mutativity in time between two Hermitian operators with
small or null commutator at time t ¼ 0. In terms of position
and momentum, it is written as

Cqp
n ðtÞ ¼ −hΨnj½qðtÞ; pð0Þ�2jΨni; ð3Þ

where jΨni and En are the eigenstates and eigenvalues of
ĤD. In Ref. [19], Cqp

n ðtÞ is called microcanonical OTOC.
We refer to the exponential growth rate of the OTOC as ΛQ.
In the semiclassical limit, substituting the commutator
by the Poisson bracket, one gets for a classically chaotic
system, fqðtÞ; pð0Þg ¼ ∂qðtÞ=∂qð0Þ ∼ eλclt, where λcl is
the classical Lyapunov exponent. This suggests the con-
nection between ΛQ and λcl, and justifies referring to ΛQ as
the quantum Lyapunov exponent.
Using the temporal evolution of the operator q̂ðtÞ ¼

eiHtq̂e−iHt, Eq. (3) can be expressed as [19]

Cqp
n ðtÞ ¼

X
l

bnlðtÞb�nlðtÞ; ð4Þ

where the matrix elements

bnlðtÞ ¼ −ihΨnj½q̂ðtÞ; p̂ð0Þ�jΨli
¼ −i

X
k

ðeiΩnktqnkpkl − eiΩkltpnkqklÞ;

with qnk ¼ hΨnjq̂jΨki, pnk ¼ hΨnjp̂jΨki, and Ωnk ¼
En − Ek. Since the Dicke Hamiltonian is of the form
ĤD ¼ ωp̂2=2þ Vðq̂Þ and ½ĤD; q̂� ¼ −iωp̂,

FIG. 1. Percentage of chaos over energy shells as a function of
energy and coupling strength. The thick (green) solid line follows
the ground-state energy and the diamond marks the critical point.
The (blue) vertical dotted line indicates the coupling γ ¼ 2γc and
the circle marks the energy chosen for the studies below.
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bnlðtÞ ¼
1

ω

X
k

qnkqklðΩkleiΩnkt −ΩnkeiΩkltÞ; ð5Þ

which simplifies the calculations. The OTOC is obtained by
evaluating numerically only the matrix elements of q̂ in the
energy eigenbasis. For this, instead of employing the usual
photon number (Fock) basis, we resort to an efficient basis
that guarantees convergence of the eigenvalues and wave
functions for a broad part of the spectrum (see [62]).
Quantum Lyapunov exponent.— In this Letter, we

concentrate our analysis on chaotic eigenstates. They are
chosen along the vertical line in Fig. 1, where the coupling
parameter is strong, γ ¼ 2γc. This line exhibits regular
and chaotic regions. From the ground state ϵ0 ¼ −2.125
to ϵ ≈ −1.6, the dynamics is regular. From ϵ ≈ −1.6 to
ϵ ≈ −1.2, regular and chaotic trajectories coexist. For larger
energies, ϵ > −1.2, chaos covers almost the whole energy
shell. We select a group of fifty-one eigenstates in the
chaotic energy region with En=ðjω0Þ ∈ ð−1.11;−1.09Þ.
They are indicated with a circle in Fig. 1.
In Fig. 2(a), we show that even for a single representative

eigenstate, the behavior of the OTOC is clearly exponential
from t≳ π=ω0 up to the saturation of the dynamics. The
growth rate ΛQ ¼ 0.139 is obtained by fitting the curve
with a straight line indicated with stars in the figure.
The exponential behavior is robust with respect to two

different probes.
(i) It holds when we use the commutator for the operator

q̂ at different times, Cqq
n ðtÞ ¼ −hΨnj½qðtÞ; qð0Þ�2jΨni, as

also shown in Fig. 2(a). The associated fit, indicated
with circles, provides Λ0

Q ¼ 0.139. Both exponential fits
lead, within the numerical uncertainty, to the same quantum
Lyapunov exponents.
(ii) The exponential growth rates are very similar for the

fifty-one different states selected in the chaotic region.
The log-log plot in Fig. 2(b) makes evident the appear-

ance of different behaviors at different time scales. For
t < π=ω0, the dynamics of Cqp

n ðtÞ [similarly for Cqq
n ðtÞ]

is controlled by the diagonal matrix elements in Eq. (5),
bnnðtÞ ¼ ð2=ωÞPkq

2
knΩkn cosðΩkntÞ, with few states con-

tributing significantly to the sum, all with energy
differences Ω ≈ 1.0. The short-time evolution is therefore
approximately described by the square of a cosine function
[sine for Cqq

n ðtÞ]. The two sinusoidal curves are shown with
dotted lines in the inset of Fig. 2(b).
At long times, the quantum dynamics saturates to the

infinite-time average,

Cpq
n ¼ 1

ω2

X
k;l

q2nkq
2
klðΩ2

kl þΩ2
nkÞ; ð6Þ

which is obtained from Eqs. (3) and (5) using that
exp½iðΩij −ΩklÞt ¼ 0 for Ωij ≠ Ωkl. Cpq

n and Cqq
n are

shown in Fig. 2(b) with dotted lines. These averages are
related with the square of the size of the available phase

space [19]. For the Dicke Hamiltonian, it scales with j2

and with the number of bosons in the system, which grows
with the excitation energy.
After the exponential growth, the OTOC fluctuates

around its asymptotic value, as seen in Fig. 2(b), with a
standard deviation σ. We define the saturation time tS as
the time when the OTOC reaches for the first time the value
Cpq
n − σ. The values of tS for C

qp
n ðtÞ and Cqq

n ðtÞ are marked
in Fig. 2(a) with a triangle and a square, respectively. The
saturation time marks the point beyond which quantum
effects are strong and the quantum-classical correspon-
dence no longer holds, therefore the association between tS
and the Ehrenfest time. The saturation of the dynamics for
finite quantum systems is in contrast to what one finds for
classical systems, where the spectrum is continuous. As j
increases and the system approaches the classical limit, Cpq

n

grows and tS increases with it.
Quantum-classical correspondence.— In a fully chaotic

system, there is one classical Lyapunov exponent associ-
ated with the whole energy shell. Numerically, however,
the Lyapunov exponents are computed for finite times,
so they depend on the initial conditions. We evaluated the

FIG. 2. Panel (a): Exponential growth of the OTOC for an
eigenstate with En=ðjω0Þ ≈ −1.1; numerical results (solid line),
fit for Cqp

n ðtÞ (stars) and for CnqqðtÞ (circles); saturation times
(square and triangle). Panel (b): Log-log plot for the evolution of
the OTOC and saturation value (dotted lines). Inset: short time
behavior compared with sin2ðtÞ and cos2ðtÞ (dotted lines). We use
j ¼ 100, n ¼ 1625.
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time average of the exponents for each trajectory up to
10000 units of time, which is enough to have stable results.
The trajectories for several initial conditions are depicted in
Fig. 3(a). This figure shows the Poincaré surfaces of section
projected on the plane ðq; pÞ for ϕ ¼ 0 and energy −1.1ω0.
In addition to chaotic trajectories, one identifies also
regular trajectories. These islands of stability are clearly
visible in Fig. 3(b) as small black regions. This bottom
panel is a classical map of chaos for the same energy and
plane of Fig. 3(a). The color code represents the values of
the finite-time Lyapunov exponents obtained for each
initial point in the phase space.
We consider thousands of initial conditions, from which

a large number Nch is chaotic. To obtain a single value for
the Lyapunov exponent for the chaotic region of the energy
shell, we average over those initial conditions that give rise
to classical chaotic trajectories and discard those with zero
exponents. We then have

λ̃hlni ¼
1

Nch

XNch

k¼1

λk ¼ lim
t→∞

1

t
1

Nch

XNch

k¼1

lnðeλktÞ: ð7Þ

The purpose of writing the last term above is to emphasize
that the classical Lyapunov exponent λ̃hlni is the average of
logarithms. We can, however, compute also the logarithm
of the average,

λ̃lnh:i ¼ lim
t→∞

1

t
ln

�
1

Nch

XNch

k

eλkt
�

¼ λmax þ lim
t→∞

1

t
ln

�
1

Nch

X
k

eðλk−λmaxÞt
�

→ λmax: ð8Þ

For t → ∞, one might expect λ̃hlni to converge to λ̃lnh:i. But
for finite times, as discussed in Ref. [18], the quantum
Lyapunov exponents ΛQ are closer to λ̃lnh:i than to λ̃hlni,
because ΛQ is obtained from the logarithm of the fit. This
closer proximity between ΛQ and λmax is confirmed for the
Dicke model as well.
In Fig. 4, we compare the classical Lyapunov exponent

λ̃hlni (lower green horizontal line), the maximum classical
Lyapunov exponent λmax (black dotted line), the quantum
Lyapunov exponents ΛQ (red circles) for the fifty-one
energy states, and the average over the quantum Lyapunov
exponents (orange solid line surperposed by the line for
λmax). The quantum exponents fluctuate due to the oscil-
lations that modulate the exponential growth and to finite
size effects; the standard deviation corresponds to the
shaded area in the figure. Increasing the value of j would
reduce this uncertainty. While λ̃hlni ¼ 0.112, the maximum
classical Lyapunov exponent, λmax ¼ 0.127, coincides with
the average value of the quantum Lyapunov exponent,
Λ̄Q ¼ 0.126, within its standard deviation σΛ ¼ 0.012.
Discussion.—We showed that for the Dicke model in the

chaotic region, the OTOC grows exponentially fast in time
with a rate comparable to the classical Lyapunov exponent.

FIG. 3. Panel (a): Poincaré surfaces of section projected on the
plane ðq; pÞ for ϕ ¼ 0 and energy −1.1ω0 for various initial
conditions. Panel (b): map of chaos over the same Poincaré
surface in terms of the finite-time classical Lyapunov exponents.
These exponents are evaluated for each trajectory up to 10000
units of time, which is enough to have stable results.

FIG. 4. Comparison between the classical Lyapunov exponent
λ̃hlni (lower green horizontal line), the maximum classical
Lyapunov exponent λmax (black dotted horizontal line), and
the quantum Lyapunov exponents ΛQ (red circles) for Cqp

n ðtÞ
for fifty-one states of different energies around ϵ=ω0 ≈ −1.1. The
solid orange line depicts the average value of ΛQ and the shaded
region represents the standard deviation around it.
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These results confirm that the quantum-classical corre-
spondence established by means of the OTOC is not
exclusive to one-body systems, but is valid also for
interacting systems with more than one degree of freedom.
This work provides a proof-of-principle and should moti-
vate similar studies in other interacting systems.
We stress that to clearly identify the quantum exponen-

tial growth and extract its rate, we need to have access to
large system sizes. This was possible here, because we
resorted to an efficient basis to construct the eigenstates.
The instrument of our analysis was the microcanonical

OTOC [Eq. (3)] corresponding to the eigenstate expectation
value of the commutator of two operators. Its use in stadium
billiards [19] prevented the observation of the quantum
exponential growth, which was only possible with the
introduction of Gaussian states [20]. In our case, however,
the eigenstates were excellent probe states for revealing the
OTOC exponential growth. This is an important result for
future studies of interacting systems, since the eigenstates are
essential building blocks for thermal averages.
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