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We present an exploratory lattice QCD calculation of the neutrinoless double beta decay zz — ee. Under
the mechanism of light-neutrino exchange, the decay amplitude involves significant long-distance
contributions. The calculation reported here, with pion masses m, = 420 and 140 MeV, demonstrates
that the decay amplitude can be computed from first principles using lattice methods. At unphysical and
physical pion masses, we obtain that amplitudes are 24% and 9% smaller than the predication from leading
order chiral perturbation theory. Our findings provide the lattice QCD inputs and constraints for effective
field theory. A follow-on calculation with fully controlled systematic errors will be possible with adequate

computational resources.

DOI: 10.1103/PhysRevLett.122.022001

Introduction.—It is a fundamental question whether the
neutrinos are Dirac or Majorana-type fermions. Neutrinoless
double beta (0v2f) decay, if detected, would prove that
neutrinos are Majorana fermions. Besides, it provides direct
evidence that the fundamental law of lepton number con-
servation is violated in nature. According to the light-
neutrino exchange mechanism, the observation of Ov2p
decay would also give us information about the absolute
neutrino mass, which oscillation experiments cannot predict.

Around the world many experiments are underway to
hunt for Ov2f decays [1-12]. Recently, four experiments
reported the decay’s half-lives of 77/, > 10* yr [9-12]

and a fifth experiment reached the level of 1.07 x 102 yr
for '?°Xe [5]. With a new generation of ton-scale experi-
ments, the level of sensitivity may be pushed 1 or 2 orders
of magnitude higher, yielding the possibility to identify a
few decay events per year [13—17].

The standard picture of Ov2f involves the long-range
light neutrino exchange—a minimal extension of the
standard model. On the other hand, current knowledge
of second-order weak-interaction nuclear matrix elements
needs to be improved, as various nuclear models lead to
discrepancies on the order of 100% [17]. A promising
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approach [18,19] to improving the reliability of the Ov2p
predication is to constrain the few-body inputs to ab initio
many-body calculations using lattice QCD [20-23].

In this work we perform the first lattice QCD calculation
of the nonlocal matrix elements for the process of zz — ee,
where the light neutrinos are included as active degrees of
freedom. We find that the decay amplitude receives
dominant long-distance contributions from the evz inter-
mediate state. Although small, the excited-state contribu-
tion is identified with a clear signal in our calculation. At
both unphysical and physical pion masses, we find that the
lattice results are consistently smaller than the predication
from leading order chiral perturbation theory [18].

Light-neutrino exchange in Ov2f decay.—We begin with
the effective Lagrangian L. for the single f decay

Legr = 2\/§GFVud(ﬁLJ/;4dL)(éLJ/;ﬂ/eL)v (1)

which represents the standard Fermi charged-current weak
interaction involving the left-handed fermionic fields ii;,
d;, e, and v,; . Here G is the Fermi constant and V ; is
the CKM matrix element. One can introduce the neutrino
mixing matrix to connect the neutrino flavor eigenstates to
the mass eigenstates. For the electron flavor, we have

erYuler = Z eryuUekir (2)
k=123

with U, the mixing matrix element.
The effective Hamiltonian for 2 decay can be con-
structed as
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1
Hegr = Bl / d4xT[£eff(x)£eff(0)]

—4G%V§d/d4xHW(x)Lﬂy(x), (3)

where the hadronic factor H,,(x) = T[J,,(x)J,.(0)] with
Ju(x) = @ y,d; (x). Under the mechanism that 0v2f
decays are mediated by the exchange of light Majorana
neutrinos, the leptonic factor can be written as [24]

pr(x) = _Wl/}/}SO(x7 O)éL (x)}’ﬂuei (0) (4)

with Sp(x,0) = [[d*q/(27)*](e'**/q*) a massless scalar
propagator and mgg = >, my U2, the effective neutrino
mass. The charge conjugate of a fermionic field y is given
as y' = Cy’ =y’

For a general 0u2f decay I(p;) — F(pr)e(p1)e(ps), its
decay amplitude can be written as

A= (F, ey, es|Heg|I)

= ~4G}Vimyy / d*x(F|H,, (x)|I)

X/(CZZ”C)I466’1‘;" (e1,exler (x)y,r,e5(0)]0).  (5)

Here we use e;, to specify the electron state carrying
momentum p;,. The leptonic matrix element is given by

(e1.esler (x)y,7,€1(0)]0) = it (p1.x)y,7,ui(p2.0)
—ir (p2.x)1,rui(p1,0),  (6)
which is antisymmetric under the exchange of two elec-

trons e; <> e, due to the Pauli exclusion principle. Here the
spinors are defined as

(ejle (x) = @iy (p;. x) = @iy (p;) e Pi¥eki,

(eiles (x) = u§ (pi.x) = u§ (p;)e~Pi¥ebi, (7)

for i =1, 2. Inserting the complete set of hadronic
intermediate states, the decay amplitude can be written as

8 j:( (F|J ) (nlJur 1)
n ZED,QEH(EH+ED.2+E2_EI)

(Fllm)(nlucll) ot ()
2E”71En(En +Ey’1+E1—E1) L L)l gL\ P2 .
(8)

Given the spatial momenta p for the hadronic intermediate
states specified by |n), the neutrino’s momenta are con-
strained by the conservation law p,; = p; — p — p; and the

iy (p1)Yuroug(p2)

corresponding energies are denoted as E,; = |p,;|. One
can write the spinor product as a combination of
it (p1)ug(p2) and @ (p1)[(vy,v.)/2]ug (p2). The coeffi-
cient of the second term is proportional to the difference in
electron momenta and generically suppressed by a factor
of |py — Pa|/kr < 1, where |p; — ps| ~ O(1) MeV and
krp ~O(100) MeV is the typical Fermi momentum of
nucleons in a nucleus [18,24]. Keeping only the term of
iy (p1)ui(p,), the decay amplitude is simplified as

F|J/4L|n><n|‘]uL|I>

-T 9)
ot n lzlzzEszn E +El/l +E EI)

with Tep = 4GFV2dmﬂﬂ”L (p1)ug(p2)-

Calculation of nm — ee decay.—In this work we calcu-
late the 7z — ee decay amplitude with two pions at rest and
two electrons carrying spatial momenta P, = —p,,
|P12] = E,z/2. While the condition of |p; — ps|/kr < 1
is no more valid, we target on the determination of the
amplitude given in Eq. (9), which is more relevant for chiral
effective field theory inputs to ab initio many-body
calculation [18]. This setup has advantages as follows.
(1). Because of the nonzero momentum carried by the
electron, the energies of any possible intermediate states
evn always lie above the initial-state energy E, . ~2m,.
Therefore, no exponentially growing contamination is
associated with the intermediate states when one performs
an integral over a Euclidean time. The effects of finite
volume on a generic second-order weak amplitude [25] are
not relevant here as well. (2). We use the discrete
lattice momenta (2z/L)m for the intermediate hadronic
particles and the momenta p,; = —p; — (2z/L)m for the
intermediate neutrino, where p; is the momentum carried
by the electron. As nonzero momenta are assigned for the
neutrino propagator, one can keep the lowest mode of the
propagator, which reduces the power-law finite-volume
effects.

Note that no short-distance divergence appears as x
approaches to 0 in L (x) L (0). This can be seen by the
power counting in the integral

/ dxei™ L g (x) Loge (0)

(uLyﬂdL)(uLyﬂdL>éL62' (10)

In lattice QCD, a hard cutoff is introduced by the inverse of
lattice spacing 1/a. Thus the unphysical short-distance
contribution appears as an O(a?) discretization effect.

Using the Coulomb gauge fixed wall sources for the ¢,
interpolating operator, we construct the correlation function
through
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Cltyty,tyy)
= —4GLV i myy

« (Zmpﬂ(tx,zw,m(ty,i>¢2¢2<r,m>n0>

. so<x,y><e1e2|a<x>ez<y>o>)
- _TleptZ<O|T[ yL(txvx) /4L(

Xy

x So(x,y) (e~ iPrE5) 4 =P (E3))

)¢ﬂ¢ﬂ( ﬂﬂ)] |0>

e Fr) (1)

On the lattice, the scalar propagator Sy(x, y)e‘i;‘(}‘i) with
k= D1, can be implemented as
- d4 iq(x—v)
Soxp)e 60 = [ 28
27)* 2 + (G + k)
1 iq(x=y)
: (12)

- 2
Vqu[ ql +Zlql+kl

with §; = 2sin(q;/2) the lattice discretized momenta. V
and T are the spatial volume and time extent of the
lattice. We can calculate the zero mode (§ = O) of the

propagator as (1/VT) > le ia(t=) /6.2 + 57 k). The
nonzero modes (g # 0) of the propagator can be con-

structed as (1/N,) Z[rvz'l ¢, (x)pi(y) using the stochastic
method, with

1 £r(q)e™
V — [ — 2
YT i, \/qt2 + 24 + ki

Here the stochastic sources &,(g) satisfy

¢r(x) = (13)

lim 3 ¢(9)5(¢) = 8, (14)

It is proposed by the NPLQCD Collaboration that the
neutrino propagator can also be computed in an exact way
by using double Fourier transformation [26].

Following Refs. [27-33] and integrating ¢, and ¢, over a
fixed window [z,,1,] with 7, > t,,, we obtain

) )

M= 303 Cltatte) | (v et

o=ty ty=1,

O|JﬂL|n><n|‘]ﬂL|”7[>

Tleptz ZZ2EME E,+E,; +E; — Em'z)

e_(En+Ev.i+E[_Elm)Tbox - 1
X | Thox + 15
( o En + Eu.i + Ei - Em‘r ) ( )

with Ty, = t, —t, + 1 the time extent of the integration
window. N,, and E,, are known from the correlation

TABLE I. Ensembles used in this work. We list the pion mass
m,, the lattice spacing inverse a~!, the space-time volume
L3 x T, the number N, of configurations used, and the number
N, of stochastic sources for the neutrino propagator.

m, [MeV] ~1 [GeV] L’xT Neont N,
420 1.73 163 x 32 200 32
140 1.01 243 x 64 60 64
function (b ()Prp(0)]> V(N7n/2Ey) (€' +
e E=(T=1) 4 const by using the methods proposed in

Ref. [34]. When T, is sufficiently large, the contamina-
tion from the exponential term vanishes as
E,+E, ;,+E; > E,,. The coefficient of the term propor-
tional to Ty, provides a result for the decay amplitude
A(zm — ee).

Numerical results.—We use two ensembles with m, =
420 and 140 MeV generated by the RBC and UKQCD
Collaborations [35]. The corresponding parameters are
listed in Table 1. We produce wall-source light-quark
propagators on all time slices and make use of the time
translation invariance to average the correlator over all T
time translations. (To reduce the computational costs at
m, = 140 MeV, we adopt the technique of all mode
average [36,37] with T sloppy propagators used for
correlator average and 1 precise propagator for correction.)
We compute propagators for both periodic and antiperiodic
boundary conditions in the temporal direction and use their
average in the calculation, which effectively doubles the
temporal extent of the lattice.

The Feynman diagrams corresponding to the process
of nm — ee are shown in Fig. 1. To show the time
dependence of the C(t,.1,,1,,) explicitly, we define the
unintegrated amplitude M (z) as a function of the variable
t=t,—1:

Nﬂ.’ﬂ

M(1) = C(t,. 1y, t,m)/<V2EM

The time 7, and ¢, are separated by at least 6 time units from

the 7z sources (1, — t,, > 6) so that the ¢,,¢,, interpolat-
ing operators can project onto the ground 7z state. At large
(1) is saturated by the ground

eE,mt,m> . (16)

intermediate state-evr

FIG. 1.

nw — ee.

Quark and lepton contractions for the process of
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FIG. 2. Unintegrated amplitude M (7) defined in Eq. (16) as a
function of t =1, —t,. The black circles show the total con-
tribution of M(#). The red curve is not a fit to M(z), but a
ground-state contribution predicted by Eq. (17). The blue squares
show the remaining excited-state contribution.

|0 12(0|J, |7)y (7|J ,p |7r)
M(I) - = Tleptv ”(Lzm:) (2E:)L

Lol (17)

where the matrix elements of (0|J,,|z)y and (z|J, |z7)y
are determined from the correlation functions (J,,, (1)1 (0))

and (¢, (1,)J (2 ) hhdi(t,.)), respectively. The subscript
(---)y indicates that the initial and final states are defined in
the finite volume. The single-pion states |rz), satisfy the
normalization condition (z(p)|z(p’))ry = (2E,)V55 5,
while the two-pion states |zz), can be connected to the
states in the finite volume |z7). through the Lellouch-
Liischer relation [38,39]

E. N/ dp  ds\:
|z7) o = <2ﬂ k3> <qdq+kdk> |zz)y,  (18)

with the momenta k = +/(E2,/4) —m2 and g = kL/(2x).

The time dependence of M(z) is shown in Fig. 2. At
large |7| the data of M(f) are consistent with the con-
tribution from the ground intermediate state. By subtracting
the ground-state contribution, the remaining excited-state

m":420MeV
0.006 T T T

m = 140 MeV

e Exp. term unremoved 10.008
0.005H = Exp. term removed ’

0.004 0.006
= 0.003
s 10.004
0.002
10.002
0.001
>
*
s S IR B S S N R B
0 5 10 15 0 5 10 15
Tbox Tbox
FIG. 3. Integrated matrix element M as a function of T\,.

The black circles show the integrated matrix element M
defined in Eq. (15). The red squares show the results of M
with the exponential term for the ground intermediate state
(e7=Teox — 1)/m, subtracted.

contribution is shown by blue square points in the left
panel of Fig. 2 and enlarged in the right panel. Although
relatively small, the contribution from the excited inter-
mediate states can be identified with a clear signal.

The integrated matrix element defined in Eq. (15) is
shown in Fig. 3. We realize that the size of integration
window T4, =~ 16 is not sufficiently large to discard the
exponential term associated with the ground intermediate
state. (This can be confirmed in Fig. 2 that at |¢| ~ 15 the
values of M(t) are statistically larger than 0.) After
removing this exponential term, we can fit the lattice data
to a linear function of T4, and determine the values of
Ay (rr — ee). To convert Ay, (zm — ee) to the physical
amplitude A(zzm — ee), a renormalization factor square
Z%, /A shall be multiplied, which relates the local lattice
vector or axial-vector current (which we use) to the
conserved or partially conserved ones. Besides, the
Lellouch-Liischer factor shall be multiplied to relate a
finite-volume amplitude to the infinite-volume one. In our
calculation, the two pions are in the ground state, i.e., at
threshold. The large-L expansion of the Lellouch-Liischer
factor is given by

2z ( do ds Ay App\ 2
—|lg—+k—)=V|l+d —+d)| —
k3(qdq+ dk) “‘L“(L)

Anp 3 a%ﬂ.’rﬂﬂ' -4

(19)
with a,, the scattering length and r,, the effective
range from the k expansion of zz scattering phase shift

kcotd(k) = az} + ry.(k*/2) + O(k*). The coefficients d;
are given by
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Zoo(1;0
d, = —2 20030 _ s 74505
T
Zoo(1:0)2 4+ 3Z00(2:0
dy = oof )+2 oof ):13.075478,
T
47% —474,(3:0
dy = ”—;M) — 11.482471. (20)
p

The values of the zeta function Zy(s,0) have been
provided by Ref. [40]. We evaluate a,, using Liischer’s
finite-size formula [40] and use it as an input to determine
the finite-volume correction up to O(L7?).

Another type of power-law finite-volume effect arises
from the long-range property of the neutrino propagator.
The finite-volume effects relevant for the evz-intermediate
state can be evaluated as

Oy |(P))(#(P)J el 77)

( Z /d%)EE E,+E,+E,—E,)

(21)

with p = (2z/L)#n the discrete momentum for the pion.
The neutrino’s energy is given by E, = |p + p,|, with p,
the momentum carried by the electron. We define a
function £(5) = {[(01/,.|2(7)) (x(P)| I/ [EA(E, +
E,+E,—E)]} and split it as f(p) = f(-p.)+
[f(p) = f(=p.)]. The term inside brackets does not con-
tribute a power-law finite-volume effect. We thus simplify

Agy as
d*p
/ ) |Pe + DI

) %) 22)

272

Apy = f(= (

—r-70|-5,

The function «(7,) with i, = p,L/(2x) can be computed
numerically and we find «(i1,) = 0.686(3) for m, =
420 MeV and 0.517(3) for m, = 140 MeV. Thus
Eq. (22) indicates that the finite-volume correction appears
as an O(L™?) effect. We expect that the size of f(—p,) is

significantly smaller than f (6), as the total contribution to
the decay amplitude from the intermediate hadronic states
that carry nonzero lattice momenta only amounts for 3%—
4% when compared to the zero-momentum contribution.
We therefore neglect this finite-volume effect in this work,
and leave it for future studies.

In Table II, we show the ground-state, excited-state, and
total contributions to the decay amplitude as A, A(¢), and
A + A respectively. The results are presented in units
of F ,2,Tlept, where the decay constant F'; is determined from
the matrix element (0|dy,ysu|z(p)) = V2p,ZsF,, with
Z, the renormalization constant. Systematic effects asso-
ciated with three choices of ¢, — 1,, = 6, 7, 8 are relatively

TABLE II. Results for ground-state (A1), excited-state (A),
and total (A“ + A(©)) contributions to the 7z — ee decay
amplitude. All the results are listed in units of F' ,2,Tlep[.

m, [MeV] t,—1t,, AW Ale) AW 4 Ale)

420 6 0.055(13)  1.517(13)
7 1.462(10) 0.060(13)  1.522(13)
8 0.052(14)  1.514(14)

140 6 —0.0664(70)  1.8200(63)
7 1.8864(50) —0.0660(73)  1.8204(62)
8 —0.0665(70)  1.8199(60)

smaller than the statistical errors, suggesting that a sepa-
ration of 6 is a safe choice to neglect the excited zz states.

Conclusion.—We have carried out a lattice QCD calcu-
lation of the decay amplitude of 7z — ee and obtained the
result with subpercent statistical errors:

Az = ee) = 1.517(13)
Feliept  |m,—120 Mev

M = 1.820(6). (23)
FﬂTlept m;=140 MeV

The decay amplitude of A(zz — ee) is mainly contributed
by the ground intermediate state via the process of
nw — mev — ee. Although the size of the excited-state
contribution is only 3%—4%, it is statistically significant
(see Fig. 2) as the uncertainty of the amplitude has been
reduced to below 1%.

Without the signal-to-noise problem, the case of
nm — ee serves as an ideal laboratory to develop the
necessary methods and tools for a calculation of Ov2p
decay with controlled uncertainties. Our exploratory study
demonstrates the possibility of a first-principles calculation
of the long-distance contribution to 0v2f decay via
light-neutrino exchange. At m, =420 and 140 MeV,
we find that the decay amplitude A(zz — ee) are 24%
and 9% smaller than the leading-order predication
ARO(zm — ee) = 2F2T ey in chiral perturbation theory
[18]. Various systematic effects such as lattice artifacts
and finite-volume effects require an accurate examination
in future work but are not expected to qualitatively alter the
conclusions of this work. The 9% deviation found here is
still quite consistent with power counting in effective field
theory. On the other hand, Ref. [41] has found that a
leading-order, short-range contribution needs to be intro-
duced in the nn — ppee decay, which breaks down
Weinberg’s power-counting scheme. It is interesting to
examine the impact of this short-range contribution in our
future study. The techniques presented here can be directly
applied to the study of other 0uv2f decays, such as nz —
pee and nn — ppee. From these decays, lattice QCD can
provide more low-energy QCD inputs for the effective field
theory [18].
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