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We investigate how information spreads in three paradigmatic one-dimensional models with spatial
disorder. The models we consider are unitarily related to a system of free fermions and, thus, are manifestly
integrable. We demonstrate that out-of-time-order correlators can spread slowly beyond the single-particle
localization length, despite the absence of many-body interactions. This phenomenon is shown to be due to
the nonlocal relationship between elementary excitations and the physical degrees of freedom. We argue
that this nonlocality becomes relevant for time-dependent correlation functions. In addition, a slow
logarithmic-in-time growth of the entanglement entropy is observed following a quench from an
unentangled initial state. We attribute this growth to the presence of strong zero modes, which gives
rise to an exponential hierarchy of time scales upon ensemble averaging. Our work on disordered integrable
systems complements the rich phenomenology of information spreading and we discuss broader
implications for general systems with nonlocal correlations.
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Introduction.—The presence of spatial disorder in quan-
tum systems can have profound effects on their static and
dynamical properties, leading in particular to the phenome-
non of localization [1–6]. Localized systems are often
characterized by an absence of diffusion and, therefore, are
capable of retaining information about the initial state for
arbitrarily long times.
Recently, there has been a surge of interest in studying

localization in noninteracting and interacting systems
[3–6], termed Anderson localization (AL) and many-body
localization (MBL), respectively. Although transport phe-
nomena are the same in AL and MBL, the presence of
interactions in MBL systems leads to a slow growth of
entanglement entropy (EE) [7–9], indicating a propagation
of information across the system, albeit at an exponentially
slow rate. In a similar light, it has recently been shown that
out-of-time-order correlators (OTOCs)—two-time correla-
tion functions in which operators are not chronologically
ordered—are also capable of detecting this slow spread
of information in MBL systems [10–15]. Evidently, the
presence of many-body interactions in localized systems
has a drastic effect on the spreading of information, as
witnessed by the EE and OTOCs. Excitingly, the realization
of MBL systems in cold atom [16,17] and trapped ion [18]
experiments, wherein the EE [19,20] and OTOC [21–26]
can be measured, allows for this slow information spread-
ing to be directly observed [27].
In this Letter, focussing on EE and OTOCs, we study

how information spreads in three disordered models whose
Hamiltonians can be brought into free-fermion form and
which, in that sense, are manifestly integrable. In all of our

models, we observe slow dynamics in the EE which yields
a logarithmic-in-time growth upon disorder averaging
(Fig. 1)—we associate this growth with the presence of
strong zero modes [28]. Furthermore, as our central result,
we find that the OTOC slowly spreads beyond the single-
particle localization length over long timescales (Fig. 2)

FIG. 1. Growth of the second Renyi entropy after a quench
under Hamiltonians (1), (2), and (3), and the transverse-field Ising
chain (TFIC). We use clean Tj ¼ 1 and disordered Rj ∈
2þ ½−5; 5�. For each disorder realization, the initial state used
is a random unentangled product state of fermion occupation or
spin quantum numbers. The system size is N ¼ 56 in all cases,
and the entropy is averaged over M ¼ 104 disorder realizations.
In systems (1), (2), and (3) at late times, the entanglement entropy
grows logarithmically despite the lack of many-body interactions
usually associated with slow growth in MBL systems. The onset
time of slow growth depends on the system size, whilst the final
value of SðtÞ as t → ∞ is a constant of order 1, in contrast to
MBL systems (see the discussion).
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despite the lack of genuine many-body interactions. We
attribute this to the nonlocal relationship between the
physical and diagonal (free-fermion) bases, allowing non-
trivial dynamical correlations to appear which are not
reflected in the static properties of eigenstates.
Although these signatures are generally associated with

MBL phases, quantitative differences from typical MBL
phenomenology are seen in the EE saturation value, which
is order 1, and the profile of OTOC growth. Indeed, the
exact solvability of our models used here implies that slow
OTOC and EE growth in localized systems is not always
mediated by many-body interactions; thus, this phenom-
enology cannot necessarily be used as signatures to dis-
tinguish AL and MBL systems. Our results highlight the
role of these nonlocal correlations in nonequilibrium
dynamics, and have broader implications for the diagnos-
tics of localized phases.
Models.—We study three disordered one-dimensional

chains with open boundary conditions. Our first system
of interest is the celebrated XY spin chain with spatial
disorder. The Hamiltonian is

ĤXY ¼
XN−1

j¼1

Tjσ̂
x
j σ̂

x
jþ1 þ Rjσ̂

y
j σ̂

y
jþ1: ð1Þ

The above Hamiltonian can be mapped to a 1D system of

free fermions ff̂ð†Þj g via the Jordan-Wigner (JW) transform

f̂†j ¼ σ̂þj
Q

k<jσ̂
z
k [29]. The transformed system constitutes

our second model, describing manifestly free fermions with
anomalous terms

Ĥfree¼
XN−1

j¼1

ðTjþRjÞf̂†j f̂jþ1þðTj−RjÞf̂†j f̂†jþ1þH:c: ð2Þ

This quadratic Hamiltonian, which is a disordered
generalization of the Kitaev chain [30], can be effici-
ently diagonalized by a Bogoliubov transformation ân¼P

jun;jĉjþvn;jĉ
†
j , such that Ĥfree ¼

P
nϵnâ

†
nân [29]. The

JW transform relates the eigenstates of (1) and (2) while
preserving the spectrum.
Our third system can also be obtained through a JW

transform, with the crucial difference that the XY model
is first rotated by π=2 into an “XZ” model. This yields a
manifestly interacting fermionic Hamiltonian which is
integrable, known as the symmetric interacting Kitaev
chain [31]

Ĥsym ¼
XN−1

j¼1

Tjðĉ†j ĉjþ1 þ ĉ†j ĉ
†
jþ1Þ þ H:c:

þ Rjð2ĉ†j ĉj − 1Þð2ĉ†jþ1ĉjþ1 − 1Þ; ð3Þ

with fermionic operators ĉð†Þj . The system features hopping
and p-wave pairing with equal amplitudes Tj, supple-
mented with nearest-neighbor density-density interactions.
After diagonalizing each system in the basis of quadratic

Jordan-Wigner fermions, one can express the single-
particle occupation numbers fâ†nâng in the physical basis;
this defines a collection of conserved quantities for each

(a) (b) (c)

(d)

FIG. 2. Dynamics of the out-of-time-order correlator CðtÞ [Eq. (4) with Â and B̂ defined in the main text] for integrable disordered
models (1), (2), and (3) with mean hRi ¼ 1 and width WR ¼ 6. The data are averaged over M ¼ 5 × 103 disorder realizations. The
system size is N ¼ 100 and we fix j ¼ 50. Panel (a): color plot of CðtÞ for the free fermion model as a function of time t and operator
distance r. Panel (b): equivalent color plot for the XY and symmetric Kitaev models, which have identical OTOCs. The white dotted line
indicates the single-particle localization length. Panel (c): Data from (b) as a function of r for fixed times t varying from t ¼ 0.5 (black)
to t ¼ 5 × 105 (light blue), showing an exponential decay with time-dependent decay constant: C ∼ e−λðtÞjrj—this differs from the profile
seen for typical MBL systems. Panel (d): Data from (b) [Plotted as FðtÞ≡ 1 − ReCðtÞ] as a function of t for various distances r, varying
from r ¼ 1 (black) to r ¼ 23 (red). Inset: short time behavior of CðtÞ.

PHYSICAL REVIEW LETTERS 122, 020603 (2019)

020603-2



system. When either Tj or Rj are disordered, system (2)
exhibits Anderson localization [32], which makes each
â†nân local in terms of f̂j operators; we show that this
locality also holds for the other two systems in the
Supplemental Material (SM) [33]. Such an extensive set
of local conserved quantities leads to the absence particle
transport [41]. This does not necessarily preclude infor-
mation spreading—e.g., in MBL systems, interactions
between the conserved quantities can lead to a slow growth
of entanglement entropy [8,9] and out-of-time-order cor-
relators [10–15]. Even so, since all our systems are
spectrally equivalent to the Anderson insulator (2), such
interactions are absent and we might expect that the EE and
OTOC will quickly saturate to nonextensive values.
However, the presence of nonlocal “JW strings” in the

transformations relating our systems plays an important
role out of equilibrium. In systems (1) and (3), the
excitation operators â†n which relate different eigenstates
are highly nonlocal, unlike in a typical Anderson insulator.
We will see that the dynamics of these systems can unveil
these nonlocal correlations which would, otherwise, cancel
for eigenstates in equilibrium. The impact of JW strings on
dynamical correlators for clean systems has been observed
previously [42–44].
We use the Jordan-Wigner transforms to derive expres-

sions for the EE and OTOC of all models in the SM [33];
these can be efficiently computed for large system sizes and
long times. Hereon, we choose Tj ¼ 1 and a uniform
distribution for Rj, with mean hRi and width WR.
Entanglement entropy.—Our quench protocol for the EE

dynamics is as follows: a random unentangled product state
of the relevant degrees of freedom (fermion occupation
numbers or spins σ̂zj) is time evolved under a disordered
Hamiltonian. (The initial state energy densities are equal on
average for all models.) The time-evolved density matrix
ρ̂ðtÞ is partitioned into left (A) and right (B) halves of the
system, and the Renyi entropy Sð2ÞðtÞ ¼ − lnf½TrBρ̂ðtÞ�2g
is calculated. We then average over M ¼ 104 disorder
realizations, yielding S̄ð2ÞðtÞ.
Figure 1 shows the disorder-averaged EE dynamics after

a quench for each of the systems (1), (2), and (3). We also
show results for the transverse-field Ising chain (TFIC) for
reference, where the second term in (1) is replaced by Rjσ̂

z
j.

The EE first grows ballistically, before plateauing after a
short time as expected for an AL system. However, we see
that, after a long time (∼105), the EE in models (1)–(3)
starts to slowly grow as log t, in contrast to that of the TFIC.
Such a logarithmic-in-time growth of EE is often asso-

ciated with MBL phases [8,9], where interactions between
conserved quantities lead to dephasing. However, since our
systems are one-body reducible, they do not possess such
interactions, so a different mechanism must be responsible.
We attribute the unusual EE growth to the presence of

nonlocal Majorana edge modes in systems (2) and (3),
which also manifest themselves as strong zero modes of (1)

[28], and to ensemble averaging. Except at criticality, these
systems always possess edge modes [31,45] with an energy
that is exponentially small in the system size. For a given
realization of disordered Rj, the energy of the zero mode is
approximately j logEmajj ∼ jPj logRjj [45,46]. Thus, the
distribution of this energy scale is Gaussian in its logarithm,
and therefore, the statistical ensemble of systems possesses
an exponential hierarchy of timescales. Such a distribution
of energy scales can in general lead to quantities which
depend logarithmically on time [47]. The TFIC does not
possess zero modes for the parameters chosen and, thus,
does not exhibit this slow growth; similarly, we have
verified that the slow growth is absent in systems with
periodic boundary conditions.
The above argument can be intuitively captured with a

two-site fermionic toy model, described by four Majorana
operators γ̂A;B1;2 . We construct a Hamiltonian which features
one “edge mode” f̂e ¼ γ̂A1 þ iγ̂B2 and one “bulk mode”
f̂b ¼ γ̂A2 þ iγ̂B1 . The Hamiltonian is Ĥ ¼ Emajf̂

†
ef̂eþ

Ebf̂
†
bf̂b. We show, in the SM [33], that if one averages

the EE Sð2ÞðtÞ for this model over the appropriate distri-
bution of the edge mode energies, i.e., PðEmajÞ ∼ 1=Emaj

for E− < Emaj < Eþ, then we obtain S̄ð2ÞðtÞ ∝ log t for
times E−1þ < t < E−1

− .
Out-of-time-order correlators.—We now study the

dynamics of OTOCs in models (1)–(3). Specifically, we
calculate the quantity (first proposed in Ref. [48] and
recently revived in [49,50])

CðtÞ ¼ 1

2
h½Â; B̂ðtÞ�†½Â; B̂ðtÞ�iβ; ð4Þ

where Â and B̂ are local Hermitian operators which
commute and each square to 1, h·iβ denotes a thermal
average at temperature β−1. The above quantity contains
the term FðtÞ ¼ hÂ B̂ðtÞÂ B̂ðtÞiβ which features operators
that are not time ordered from right to left. Clearly,
CðtÞ ¼ 1 − ReFðtÞ. The physical intuition behind this
quantity is that, in a chaotic system, the operator support
of B̂ðtÞ will spread and eventually overlap with the support
of Â, at which point CðtÞ will become nonzero. Thus, CðtÞ
measures operator spreading under the Hamiltonian of
interest. The OTOC provides a way to understand how
information spreads in localized systems. Logarithmic
OTOC spreading has been proposed as a signature of
MBL [10–15].
We compare how the OTOC evolves for each of the

systems (1)–(3). We choose Âj and B̂jþr to be the same
local operator shifted by r and which will fix j while
varying r. We choose Âj to be σ̂yj , ð2f̂†j f̂j − 1Þ, and

ð2ĉ†j ĉj − 1Þ for the XY, free, and symmetric models,
respectively. We calculate the OTOC at infinite temperature
by evaluating the operator in (4) on a randomly selected
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eigenstate for each disorder realization. The OTOCs of
models (1) and (3) can be shown to be identical.
Importantly, the OTOC expression for these two cases
features JW strings between sites j and jþ r.
The OTOC for our three models is plotted in Fig. 2,

which was calculated using the formula derived in the SM
[33]. In the free fermion case, the OTOC spreads for a short
time and then saturates at time t ∼Oð1Þ, as one would
expect for an AL system. However, the presence of strings
qualitatively changes the behavior of the OTOC for systems
(1) and (3). As one of the central results of this Letter, we
find that the OTOC does not saturate at short times but
spreads out. By plotting the OTOC at constant times, we
see that CðtÞ as a function of r always decays exponentially
with r, but with a decay constant that decreases with time
beyond the single-particle localization length, unlike in the
free fermion case. For fixed distance, the onset as a function
of time, as well as the approach to the long-time value,
appears to be power-law, similar to other integrable
systems [44,51].
Discussion.—We have identified two features in the

dynamics of three integrable disordered models which
lie beyond the physics expected for a typical Anderson
insulator.
First, we observed a slow logarithmic-in-time growth of

the disorder-averaged bipartite entanglement entropy; we
argued, using a toy model, that this was due to the presence
of strong zero modes in our models. The significance of
the strong zero modes (as opposed to, e.g., ground state
degeneracy due to spontaneous symmetry breaking) is
twofold: it ensures that the entire spectrum is nearly
pairwise degenerate; and it constitutes a mode whose wave
function is delocalized across the chain, such that it is
picked up by the entanglement cut (see the Supplemental
Material [33] for details). We expect that this underlying
mechanism for slow entanglement dynamics also applies to
nonintegrable systems featuring strong zero modes, e.g.,
parafermionic models [46].
The limits of the energy distributionEþ andE− determine

the timescales when the logarithmic growth begins and ends.
Their values depend on the Hamiltonian parameters as well
as the system size. Away from criticality, the energies E�
decrease for larger system sizes, leading to a later onset of
logarithmic growth; this explains the late onset of slow
growth in Fig. 1. However, we expect this phenomenon to
appear at earlier times in critical systems for arbitrarily large
N or in cases where edge modes appear at finitely separated
topological domain walls. Moreover, the infinite time value
of the EE is expected to be a constant of order 1. Indeed, our
results appear to be consistent with previous studies of
entanglement dynamics in the disordered XX chain, i.e.,
the critical version of the XY model with Rj ¼ Tj [52].
Second, we observed a slow growth of the OTOC in

models (1) and (3). The profile of OTOC spreading we see
is not typical for MBL or ergodic systems, where an

“information front” emerges separating regions of CðtÞ ≈ 0
and CðtÞ ≈ 1 [10–15]. This is in line with previous proofs
of zero Lieb-Robinson velocities in related models [53].
However, the OTOC can reach appreciable values at spatial
separations well beyond the single-particle localization
length ξ (dotted line in Fig. 2), unlike one would expect
for a typical Anderson localized system.
Indeed, in the language of [41], the single-particle orbital

occupations â†nân in the free system (2) constitute a set
of “l-bits”: each forms a two-level system which can be
defined locally in terms of the physical operators. However,
the analogous quantities in the other models are not strictly
l-bits, since the excitation operators â†n are not local in the
physical basis due to the JW strings. This subtlety does not
affect the properties of static correlation functions, where
hbjâ†njbi is necessarily zero if jbi is an eigenstate, but
matrix elements between different eigenstates hbjâ†njci are
sensitive to this nonlocality, and such terms do appear in
dynamical correlation functions.
Accordingly, let us express the OTOC FðtÞ for an

eigenstate jΨi ¼ jbi in a Lehmann representation, which
gives (the states jbi, jci, jdi, jei are all eigenstates)

FðtÞ ¼
X

c;d;e

hbjÂjjcihcjB̂jþrjdihdjÂjjeihejB̂jþrjbi

× exp ½iðEb þ Ed − Ec − EeÞt�; ð5Þ

and let us consider the long-time limit of the OTOC
Fð∞Þ ≔ limT→∞ð1=TÞ

R
T
0 dt0Fðt0Þ [54]. The terms with

nontrivial dynamics Eb þ Ed − Ec − Ee ≠ 0 will oscillate
and average to zero in the long-time limit, leading to a
decay of FðtÞ from its initial value Fð0Þ ¼ 1 [equivalently
an increase of CðtÞ from zero]. We now discuss the criteria
for nontrivial terms to have finite matrix elements, and
hence for CðtÞ to be nonzero.
Since all our systems are spectrally equivalent to the

noninteracting Hamiltonian (2), we can label energy
eigenstates by their single-particle occupation numbers

hbjâ†nânjbi≕ ηðbÞn . Terms with nontrivial dynamics satisfy
P

nðηðbÞn þ ηðdÞn − ηðcÞn − ηðeÞn Þϵn ≠ 0 for single-particle ener-
gies ϵn. For a finite system, we assume that no two single-
particle energies are commensurate, this quantity is only

zero if τðbÞn þ τðdÞn − τðcÞn − τðeÞn ¼ 0 for all n (i.e., there are
no “accidental” cancellations of the incommensurate ϵn).

Therefore, we seek terms where ηðbÞn þ ηðdÞn − ηðcÞn −
ηðeÞn ≠ 0 for at least one n. From (5), one sees that, if Âj

has no overlap with the excitation operators â†n and/or ân
(i.e., Âj cannot cause a transition in the value of ηn), then

we must have ηðbÞn ¼ ηðcÞn and ηðdÞn ¼ ηðeÞn , so the term will be
static; the same holds for B̂jþr. Therefore, nonzero terms
only arise when Âj and B̂jþr can excite or deexcite the same
single-particle orbital.
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In generic AL systems, Âj will only be able to excite
orbitals “near” site j, and similarly, B̂jþr acts only near site
(jþ r). For sufficiently large r, it will not be possible for Âj

and B̂jþr to simultaneously act on the same orbital without
incurring a factor of e−r=ξ, where ξ is the single-particle
localization length; hence, the OTOC will not spread
beyond the length ξ. Additionally, for small r, only an
Oð1Þ number of orbitals can participate in the nonzero
terms, so the time at which the OTOC saturates to its long-
time limit will also be Oð1Þ. This explains the fast
saturation and spatial decay of the OTOC in Fig. 2(a).
However, in systems (1) and (3), the elementary exci-

tations described by âð†Þj are nonlocal. This allows for Âj

and B̂jþr to act on the same orbital even when r is large.
Indeed, when one expresses the OTOC in the free-fermion
f̂j basis, noncanceling JW strings appear between sites j
and (jþ r), so all orbitals in this range can participate in
the contributing terms. This leads to the long-time spread-
ing of OTOCs beyond the static single-particle localization
length. The number of participating single-particle energies
ϵn isOðrÞ, so the time taken to approach the long-time limit
will also increase with r, since there will be more nearly
canceling terms with slow dynamics in (5). This explains
the qualitative aspects of the OTOC growth seen in
Fig. 2(b). We expect that similar arguments hold for more
general systems which also have nonlocal string correla-
tions, leading to slow growth of OTOCs.
Note that OTOC operators Âj and B̂jþr with canceling

JW strings, e.g., Âj ¼ ðĉj − ĉ†jÞðĉjþ1 þ ĉ†jþ1Þ, would not be
sensitive to the nonlocality of our systems, and we would
see the same behavior as in Fig. 2(a). This sensitivity to the
choice of OTOC has been reported in the clean TFIC
in Ref. [44].
We note that fast oscillations in the OTOC for individual

disorder realizations are expected even in the infinite-time
limit due to the persistence of single-particle recurrences.
The above arguments and the data shown in Fig. 2
characterize the long-time average over many disorder
distributions; however, the variance in the data is large,
as one would expect.
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