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Recovering an unknown Hamiltonian from measurements is an increasingly important task for
certification of noisy quantum devices and simulators. Recent works have succeeded in recovering the
Hamiltonian of an isolated quantum system with local interactions from long-ranged correlators of a single
eigenstate. Here, we show that such Hamiltonians can be recovered from local observables alone, using
computational and measurement resources scaling linearly with the system size. In fact, to recover the
Hamiltonian acting on each finite spatial domain, only observables within that domain are required. The
observables can be measured in a Gibbs state as well as a single eigenstate; furthermore, they can be
measured in a state evolved by the Hamiltonian for a long time, allowing us to recover a large family of
time-dependent Hamiltonians. We derive an estimate for the statistical recovery error due to approximation
of expectation values using a finite number of samples, which agrees well with numerical simulations.
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Introduction.—Contemporary condensed matter physics
has witnessed great advancements in tools developed to
obtain the state of a system given its Hamiltonian. As
quantum devices are being rapidly developed, the converse
task of recovering the Hamiltonian of a many-body system
from measured observables is becoming increasingly
important. In particular, it is a necessary step for certifying
quantum simulators and devices containing many qubits.
As these expand beyond the power of classical devices [1],
there is a growing need to certify them using only a
polynomial amount of classical computational resources as
well as quantum measurements.
Various methods have been suggested for recovering a

Hamiltonian based on its dynamics [2–8] or Gibbs state
[9–11]. The system-size scaling of the recovery efficiency
can be improved using a trusted quantum simulator
[12–16], manipulations of the investigated system [17],
or accurate measurements of short-time dynamics [18,19].
Here, we suggest a framework for recovering a generic

local Hamiltonian using only polynomial time and mea-
surements. Inspired by the recently introduced method for
recovering a local Hamiltonian from measurements on a
single eigenstate [20–22], our framework offers four main
contributions. First, we generalize to mixed states such as
Gibbs states ρ ¼ ð1=ZÞe−βH, treating any state that com-
mutes with the Hamiltonian at the same footing as an
eigenstate. Second, our method can be applied to dynamics
of arbitrary low-energy initial states time evolved by the
Hamiltonian. Third, it allows us to recover time-dependent
Hamiltonians if the functional form of their time depend-
ence is known. Finally, in the case of short-range inter-
actions, we can infer the Hamiltonian of a local patch L
based only on local measurements inside L. This implies
that a short-ranged Hamiltonian on a large system can be

obtained with a number of measurements and computation
time linear in system size.
Problem setting.—We wish to recover the Hamiltonian

acting on a region L by measuring observables only in L.
We would first like to make these notions precise.
We consider a Hamiltonian H on a finite lattice Λ in d

dimensions,

H ¼
X
i

hi: ð1Þ

We assume that H is k local, such that each hi acts
nontrivially on no more than k spatially contiguous sites
(i.e., contained within a ball of diameter k). We focus on a
specific subset of sites L ⊆ Λ. We define its interior L0 ⊆ L
as the sites that are not connected by H to sites outside L
(Fig. 1). We denote by HL the subset of hi terms in H that
act nontrivially on L0.
We call any state ρ that is stationary under H a “steady

state” (taking ℏ ¼ 1),

i∂tρ ¼ ½H; ρ� ¼ 0: ð2Þ

In particular, ρ can be any eigenstate as well as a Gibbs
state. Our goal is to recover HL from a steady state of H,
based only on measurements in L.
Algorithm.—To recover HL, we identify a set of local

constraints onHL obeyed by any steady state ρ of H. Since
ρ is stationary under H, so is the expectation value

hAi¼defTrðρAÞ of any operator A in the state ρ, so that
∂thAi ¼ −hi½A;H�i ¼ 0. If A is supported only on L0, this
constraint becomes
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hi½A;HL�i ¼ 0; ð3Þ

since A trivially commutes with H −HL.
The k-local operators acting on L0 form a linear space.

We choose a basis fSmgMm¼1 for this space of operators,
where M is its dimension. When we expand HL in this
basis,

HL ¼
XM
m¼1

cmSm; ð4Þ

the constraint (3) becomes a linear homogeneous constraint
on the vector c⃗ ¼ ðc1; c2;…; cMÞ,

XM
m¼1

cmhi½A; Sm�i ¼ 0: ð5Þ

Using a set of operators fAngNn¼1, each supported on L0,
we obtain a set of N linear constraints

∀ n∶
XM
m¼1

cmhi½An; Sm�i ¼ 0; ð6Þ

which is equivalent to the N ×M real linear equation

Kc⃗ ¼ 0; Kn;m¼defhi½An; Sm�i: ð7Þ

The number M of basis elements Sm that span HL is linear
in the subsystem’s volume jLj. In contrast, the maximal
number of constraints scales like the number of linearly
independent observables An in L0, which grows exponen-
tially with jL0j. Thus, for a sufficiently large but constant
region L (depending on k but not on jΛj), we can always
have more equations than unknowns, i.e., N > M. As
argued in Ref. [20], we expect these equations to be

generally independent, thereby providing a unique solution
c⃗ up to an overall scale.
Given a region L whose Hamiltonian we wish to learn,

our method is therefore as follows: (1) Identify a set of
terms fSmgMm¼1 spanning the space of possible HL’s.
(2) Construct a constraint matrix KN×M by measuring
hi½An; Sm�i with respect to a set of constraints fAngNn¼1

supported on L0. (3) Estimate HL ∝
P

M
m¼1 cmSm, with c⃗

the lowest right-singular vector of K.
The lowest right-singular vector of K is the numerical

solution to Eq. (7), the vector that minimizes kKck.
Namely, it is the ground state of the “correlation matrix,”

M ¼ KTK: ð8Þ

Extension to a dynamical setting.—So far, we have
described how to recover a time-independent H from
measurements of its steady state. However, many exper-
imental settings do not have access to an exact steady state
of H. Instead, we now describe how to obtain an approxi-
mate steady state from an arbitrary initial state by evolving
it with H for long times.
In the dynamical approach, we repeatedly initialize our

system in some state ρð0Þ. We let it evolve for a random
time distributed uniformly in 0 ≤ t0 ≤ t, before measuring
an operator A. The average outcome of these measurements
is given by TrðρavAÞ, where ρav ¼ ð1=tÞ R t

t0¼0 ρðt0Þdt0. For a
time-independent H, this time-averaged density matrix
approaches a steady state in trace norm, since by integrating
(2), we obtain

k½ρav; H�k1 ¼
1

t
kρðtÞ − ρð0Þk1 ≤

2

t
: ð9Þ

This allows us to recover a time-independent H from a
constraint matrix K of time-averaged observables.
The dynamical approach can be extended to time-

dependent Hamiltonians of the form

ĤðtÞ ¼ Ĥð0Þ þ V̂fðtÞ; ð10Þ

where fðtÞ is a known function. Similar to Eq. (9), now the
time-averaged commutator ð1=tÞ R t

0½ρðt0Þ; Ĥðt0Þ�dt0 must
decay with time. Therefore, we estimate the coefficients
of Ĥð0Þ, V̂ as the lowest singular vector of an extended
constraint matrix KN×2M composed of time-averaged as
well as time-modulated measurements (see Supplemental
Material [23]),

∀ m ≤ M∶ Kn;m ¼ 1

t

Z
t

0

h½An; Sm�idt0;

Kn;mþM ¼ 1

t

Z
t

0

h½An; Sm�ifðt0Þdt0. ð11Þ

FIG. 1. Recovery from local measurements. (Left) Our method
recoversHL (light blue), using only measurements of observables
residing in L (solid blue line), a subregion of the whole system Λ.
The interior L0 ⊆ L (dashed blue line) consists of sites interacting
only within L. (Right) Our simulations are performed on jΛj ¼
12 chains, recovering HL on the eight middle spins.
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Sample complexity.—The complexity of our method
depends on the number of observables we need to measure
and on the accuracy to which we need to measure each of
them. Experimentally, each observable hi½An; Sm�i can only
be measured to finite accuracy due to statistical uncertainty
in estimating it using a finite number of samples ns. We
quantify the resulting error in the reconstruction process by
the l2 distance between the normalized recovered and true
coefficient vectors [24],

Δ ¼ kĉtrue − ĉrecoveredk2; ð12Þ

where ĉ ¼defðc⃗=kc⃗kÞ.
Following Ref. [20], we analyze the reconstruction error

using a simple perturbation theory on the correlation matrix
M. We model the error in each entry Kn;m obtained by ns
samples as an independent Gaussian with zero mean and

standard deviation ϵ ≈ n−ð1=2Þs . To lowest order in ϵ, we
estimate the expected error

EðΔÞ ≈ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiX
i>0

1

λi

s
¼defΔest; ð13Þ

where λi are the eigenvalues of M (see Supplemental
Material [23]).
To open a gap in M between λ0 and λ1 and recover a

unique Hamiltonian, at least as many constraints N as
unknowns M are required. This means measuring OðjLjÞ
operators i½An; Sm�, since each constraint An commutes
with all but a constant number of candidate Hamiltonian
terms Sm. Moreover, the Hamiltonian can be reconstructed
in linear time in jLj and a linear number of measurements
by breaking down L into smaller subregions and recon-
structing the Hamiltonian on each of them separately. For
translationally invariant Hamiltonians, a single subregion is
sufficient, with only a constant number of operators to be
measured.
Minimizing the support of the measured operators is

advantageous for some experimental settings, in which
correlations involving multiple sites are hard to measure.
Suppose, for example, we wish to recover a generic two-
localH. To obtain more equations than unknowns, we need
constraints An that act on at least two sites. This corre-
sponds to three-local measurements i½An; Sm�. Luckily,
measurements of only two-local observables can suffice
if a few different steady states are available. These may be
Gibbs states at different temperatures or time-averaged
evolutions of different initial conditions. In this setting,
each steady state can provide an independent set of
constraints. For a two-local Hamiltonian in one dimension,
single-site An operators and five different steady states can
provide sufficient constraints to open a gap in M. More
generally, access to multiple steady states allows us to
recover a k-local H using only k-local measurements.
Numerical simulations.—To demonstrate the perfor-

mance of our method, we numerically simulated random

one-dimensional spin 1=2 chains. We considered
Hamiltonians consisting of all possible two-local terms,
acting on single spins and nearest neighbors,

H ¼
XjΛj
l¼1

X3
α¼1

clασαl þ
XjΛj−1
l¼1

X3
α¼1

X3
β¼1

clαβσαl σ
β
lþ1: ð14Þ

In each simulation, we generated a random two-local
HamiltonianH [Eq. (14)] on jΛj ¼ 12 sites by sampling the
vector of all coefficients c⃗ from a Gaussian distribution
with zero mean and unit standard deviation, setting the
energy scale for what follows. We numerically calculated
the ground state of H and then recovered HL from the
ground state in steps. In each step, we added one row to the
constraint matrix K by choosing a constraint operator An

and estimating fhi½An; Sm�igMm¼1. Here, An is an operator
supported on the six middle sites L0, and fSmgMm¼1 is the
subset of terms in Eq. (14) acting on L0. To measure the
robustness of the reconstruction, we added to the constraint
matrix K a noise matrix of independent Gaussian entries
with zero mean and standard deviation ϵ ¼ 10−12.
As expected, once sufficiently many constraints had

been measured, our procedure recovered the Hamiltonian
to high accuracy (Fig. 2). As soon as N ¼ M − 1, the
correlation matrix M opened a gap, allowing us to recover
the coefficient vector ĉ given by the ground state ofM. As
more constraints were added, the gap gradually grew. The

FIG. 2. Quality of Hamiltonian reconstruction as a function of
the number of measured constraints N. We generated ground
states of random spin chains [Eq. (14)] and measured local
observables i½An; Sm� on the eight middle spins L to recover HL.
When the number N of constraints An exceeded the numberM of
possible Hamiltonian terms Sm (dashed vertical line), M opened
a gap (light blue; λ0 ¼ 0 here). The reconstruction error [red, see
Eq. (12)] was solely due to the addition of a small Gaussian noise
with standard deviation ϵ ¼ 10−12 to each measurement and
followed closely an estimate obtained from the spectrum of K
[dashed purple, see Eq. (13)]. We used all k-local constraints An
up to k ¼ 4 in an increasing order of support size k. The solid
vertical lines denote the transition to k ¼ 2, 3, 4, respectively, and
within each k we chose the constraints in random order. Results
were averaged over 200 random Hamiltonians; the means and
standard deviations were calculated after taking the log.
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reconstruction error decreased correspondingly, showing
excellent agreement with our estimate (13). We also ran
simulations on random XY chains to reach larger system
sizes (jΛ ¼ 100j), using the methods described in
Refs. [25–28]. The gap of the correlation matrix seemed
insensitive to the size of the subsystem for the range we
examined 7 ≤ jLj ≤ 13 (Fig. S1 [23]).
Reconstruction from Gibbs states.—Next, we recon-

structed HL for random spin chains from measurements of
their Gibbs states. We sampled 200 random Hamiltonians
(14) on jΛj ¼ 12 sites and generatedGibbs states ð1=ZÞe−βH
for varying β ∈ ½0.01; 1�. We then measured a fixed number
of observables, corresponding to all four-local constraintsAn
supported on the sixmiddle spinsL0.We added a small noise
(ϵ ¼ 10−12) to each measurement.
Our results show that the reconstruction error increases

with temperature (Fig. 3, left). As the system approaches a
fully mixed state, the commutator ½H; ρ� approaches zero for
every H, which implies that many different H are becoming
compatible with ρ. Correspondingly, the elements of the
constraint matrix K shrink and so does its gap. At low
temperatures, the reconstruction qualitywas similar to that of
ground states. By combining measurements performed at
different temperatures, wewere able to recoverH using only
two-local measurements (Fig. 3, right).
Reconstruction from dynamics.—To demonstrate

Hamiltonian recovery from the dynamics of an initial state,
we simulated a quench protocol. We generated two random
Hamiltonians Ĥð0Þ, Ĥð1Þ on jΛj ¼ 12 sites from the

ensemble (14). We initialized our system in the ground
state of Ĥð0Þ þ Ĥð1Þ and evolved it by Ĥð0Þ alone. This
initialization yielded states whose energy with respect to the
final Hamiltonian was not too high. We then attempted at

different times t to recover Hð0Þ
L on the eight middle spins

using four-local constraints An. We did this by constructing a
constraint matrix Kt from time-averaged values of
hi½An; Sm�i, sampled at equally spaced intervals dt ¼ 0.05
up to time t.
After a transient period, the first excited eigenvalue λ1 of

the correlation matrix M saturated (Fig. 4). The lowest
eigenvalue λ0 continued to decay, opening a gap that
widened with time. This decay fits to the power lawffiffiffiffiffi
λ0

p
∝ ð1=tÞ, reflecting the expected decay rate of the

commutator with the true Hamiltonian from Eq. (9). Here
the finite value of λ0 played the role of noise, leading to
reconstruction error. As λ0 decreased, the Hamiltonian was
reconstructed to better and better accuracy.
Recovery of time-dependent Hamiltonians.—We

repeated the quench experiments with a final Hamiltonian
that depends on time, focusing on a periodic drive with a
single frequency: fðtÞ ¼ cosωt. We initialized our system in
the ground state of Ĥð0Þ þ Ĥð1Þ and evolved it in time with

ĤðtÞ ¼ Ĥð0Þ þ JV̂ cosωt; ð15Þ
taking J ¼ 0.5 and ω ¼ 0.05. We sampled all three terms
Ĥð0Þ, Ĥð1Þ, and V̂ identically using the form given by
Eq. (14). We then constructed at different times an extended

FIG. 3. Quality of Hamiltonian reconstruction from Gibbs states
ρ ¼ ð1=ZÞe−βH. We reconstructed HL on the L ¼ 8 middle spins
of randomspin chains (14) of length jΛj ¼ 12 (see Fig. 1). (Left)As
a function of temperature T ¼ β−1, using four-local constraintsAn.
The gap of the correlation matrix M decreased with temperature
(light blue). Correspondingly, the reconstruction error (red) due to a
small measurement uncertainty (ϵ ¼ 10−12) increased according to
the estimate (13) obtained from the spectrum ofK (dashed purple).
(Right) Reconstruction with two-local measurements only, using
single-site constraints An and multiple Gibbs states of different
temperatures. We generated Gibbs states at temperatures in the
range β−1 ¼ ½100; 102�, chosen with uniform spacings (in log
space), which decreased with the number of states. A few different
states sufficed; additional states improved the reconstruction
quality. Results were averaged over 200 randomizations.

FIG. 4. Reconstruction from dynamics, as a function of time, of
the final Hamiltonian following a quench at t ¼ 0. (Left)
Reconstruction of a time-independent Hamiltonian from
ρavðtÞ ¼ ð1=tÞ R t

0 ρðt0Þdt0. While the first excited eigenvalue λ1
of the correlation matrix M saturated (light blue), its lowest
eigenvalue λ0 decayed with time (green), leading to a decrease in
the reconstruction error Δ (red). (Right) Reconstruction of a time-
oscillating Hamiltonian ĤðtÞ ¼ Ĥð0Þ þ JV̂ cosωt. Here λ1 de-
creased with time due to heating, leading to a larger reconstruction
errorΔ compared to the time-independent case (red for Ĥð0Þ, purple
for V̂). Results were averaged over 50 randomizations.
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constraint matrixKN×2M from time-averaged as well as time-
modulated observables [see Eq. (11)].
As in the time-independent case, λ0 decayed with time

(Fig. 4, right). However, λ1 decayed too, indicating a small or
vanishing gap λ1 − λ0 for long times, corresponding to high
temperatures (see Fig. 3). Recovery in this case is therefore
possible when the system does not heat too fast, i.e., when λ1
decays slower than λ0, which depends on the driving ampli-
tude J and frequency ω (see Supplemental Material [23]).
Discussion.—We suggest a framework for inferring local

Hamiltonians. Our framework generalizes the recently
introduced correlation matrix formalism [20–22], applying
to Gibbs states and dynamics as well as eigenstates.
Importantly, it allows us to recover short-ranged
Hamiltonians using measurements as well as computational
resources scaling linearly with system size.
We point out that, even when the available measurements

do not provide sufficient constraints to open a gap in M
and yield a unique Hamiltonian H, our method recovers a
linear subspace containing H. This can be combined with
additional knowledge, e.g., to verify the accuracy of a prior
guess for H or to improve such a guess.
Most of our formalism applies equally well to long-

ranged Hamiltonians, in which interactions can involve any
arbitrary set of k spins. Our algorithm must then be applied
to the whole system Λ at once rather than locally. Still, the
number of possible Hamiltonian terms scales polynomially
with system size, as jΛjk.
Note that, when we enforce stationarity of all possible

observables An on the full system L ¼ Λ, our correlation
matrix takes the appealing form MΛ

ij ¼ Trð½ρ; Si�†½ρ; Sj�Þ,
coinciding with the correlation matrix defined in Ref. [20]
(up to a scalar; see SupplementalMaterial [23]). If we suffice
with the full set of observables An on the interior L0 of a
subsystem, Eq. (7) is equivalent to the operator identity
Tr∂L½ρL;HL� ¼ 0. Here, ρL is the reduced density matrix on

L and Tr∂L is a partial trace on the boundary spins ∂L¼defL −
L0 included inL but not in its interior (seeRef. [29]).We also
note that adding constraints andHamiltonian terms acting on
∂L converts our algorithm to a method for finding the
entanglement Hamiltonian on L (similar to [30]).
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