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Signaled by nonanalyticities in the time evolution of physical observables, dynamic quantum phase
transitions (DQPTs) emerge in quench dynamics of topological systems and possess an interesting
geometric origin captured by dynamic topological order parameters (DTOPs). In this Letter, we report the
experimental study of DQPTs using discrete-time quantum walks of single photons. We simulate quench
dynamics between distinct Floquet topological phases using quantum-walk dynamics and experimentally
characterize DQPTs and the underlying DTOPs through interference-based measurements. The versatile
photonic quantum-walk platform further allows us to experimentally investigate DQPTs for mixed states
and in parity-time-symmetric nonunitary dynamics for the first time. Our experiment directly confirms the
relation between DQPTs and DTOPs in quench dynamics of topological systems and opens up the avenue
of simulating emergent topological phenomena using discrete-time quantum-walk dynamics.
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The study of phase transitions lies at the core of the
description of equilibrium states of matter [1]. Besides
conventional continuous phase transitions that are signaled
by symmetry breaking, topological phase transitions, char-
acterized by the change of topology in their ground-state
wave functions, have attracted much attention since the
discovery of quantum Hall effects [2,3]. Recent experi-
mental progress has further led to the exciting possibility of
creating novel quantum phases of matter in dynamic
processes [4–19] and thus raised the challenging question
on the understanding of emergent phases and phase
transitions in nonequilibrium dynamics.
Proposed as temporal analogs to continuous phase

transitions, dynamic quantum phase transitions (DQPTs)
are associated with nonanalyticities in the time evolution of
physical observables [20–22] and have been experimen-
tally observed recently [15–18]. For continuous phase
transitions in equilibrium systems, the free energy becomes
nonanalytic at critical points, associated with complex-
partition-function zeros known as Fisher [23] or Lee-Yang
zeros [24,25]. Analogously, DQPToccurs as a consequence
of the emergence of dynamic Fisher zeros, where the
Loschmidt amplitude GðtÞ ¼ hψð0ÞjψðtÞi [26], the analog
of the partition function, vanishes at critical times. This
leads to nonanalyticities in the rate function gðtÞ ¼
−1=N ln jGðtÞj2, which serves as the dynamic free energy
[22]. Here jψðtÞi is the time-evolved state, and N is the
overall degrees of freedom of the system. Whereas it is
still unclear to what extent key concepts of continuous

phase transitions can be extended to describe DQPTs,
an intriguing discovery is the geometric origin of
DQPTs, captured by dynamic topological order parameters
(DTOPs), which suggests the intimate connection between
DQPTs and emergent topological phenomena in dynamic
processes [27–31].
A relevant dynamic process here is the quench of

topological systems, where the ground state jψ ii of the
initial Hamiltonian Hi evolves under the final Hamiltonian
Hf. Here two different types of dynamic phase transition can
occur: topological DQPTs, whose occurrence is intimately
related to the topology ofHi andHf, and accidental DQPTs,
which are to the contrary. Specifically, for quench dynamics
of one-dimensional topological systems, topological
DQPTs necessarily exist when ground states of Hi and
Hf belong with distinct topological phases [32–34]. These
topological DQPTs provide a crucial link between static
topological phases and dynamic topological phenomena. In
two dimensions, topological DQPTs recently observed in
cold atomic gases are accompanied by dynamic vortices [8],
which serve as the effective order parameter. In one
dimension, on the other hand, relations between DQPTs
and DTOPs have yet to be experimentally investigated.
In this Letter, we report the experimental simulation

of topological DQPTs using discrete-time quantum walks
(QWs) [35–39] of single photons in one dimension. We
map single-photon QWs to many-body quench dynamics
between Floquet topological phases of fermions, where
topological DQPTs naturally emerge. Specifically, we probe
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inner products of the initial and time-evolved states of the
single-photon dynamics via inference-based measure-
ments, from which we construct quantities such as the
rate function and DTOPs for the many-body dynamics.
An advantage of photonic QW dynamics lies in the relative
ease of introducing decoherence and loss, which further
allows us to experimentally investigate DQPTs for mixed
states and in nonunitary dynamics for the first time.
Our experimental results agree well with theoretical
predictions [28,29,40].
Simulating quench between topological phases.—We

study DQPTs in quench dynamics using discrete-
time QWs on a one-dimensional homogeneous lattice
L (L ∈ Z), where we use polarization states of single
photons fjHi; jVig to represent coin states and spatial
modes to encode walker states. As illustrated in Fig. 1(a),
the main component of our setup is a cascaded interfero-
metric network, where QW dynamics is governed by the
Floquet operator

U ¼ Cðθ1=2ÞSCðθ2ÞSCðθ1=2Þ: ð1Þ

Here, the coin operator CðθÞ rotates the single-photon
polarization by θ about the y axis. The shift operator S
moves the walker in jHi (jVi) to the left (right) by one
lattice site.
Importantly, U can have nontrivial topological proper-

ties, as the corresponding effective Hamiltonian Heff can
have topologically nontrivial Floquet bands characterized
by finite winding numbers [9,39,41]. Here Heff is defined
through U ¼ e−iHeff . As illustrated in Fig. 1(b), winding

numbers associated with these Floquet bands are tunable
through the coin parameters ðθ1; θ2Þ.
For a typical QW process, the photon is initialized in a

localized state jψ ii and is subject to repeated operations
of U. At the tth step, the photon is in the state jψðtÞi ¼
Utjψ ii ¼ e−iHeff tjψ ii. If we choose jψ ii to be an eigenstate
of Ui ¼ e−iH

i
eff , the resulting QW dynamics is essentially

a single-photon discrete-time quench process driven by
the effective Hamiltonian Heff . Because of the lattice-
translational symmetry, dynamics in different quasimo-
mentum k sectors are decoupled, which leads to a coherent
superposition of time evolutions at different quasimomenta.
This enables us to map the single-photon quench process
into a quench between many-body Floquet topological
phases associated with Hi

eff and Heff , where time evolutions
in different k sectors are also decoupled, but the many-body
wave function is a direct product of single-particle states at
different quasimomenta. Crucially, Floquet operators Ui

with localized eigenstates exist, whose coin parameters
are on the horizontal black dashed lines in Fig. 1(b). The
correspondingHi

eff are topologically trivial with ν
i ¼ 0. For

contrast, in the following, we label the Floquet operator
driving the QW as Uf, with νf the corresponding winding
number. It is interesting to note that, whereas DQPTs do not
actually occur in QWs of single photons, we are able to
simulate DQPTs in quench dynamics of many-body topo-
logical systems using our setup.
Initialization and detection.—We initialize the walker

photon at x ¼ 0 (x is the site index), with its coin state given
by the density matrix ρ0 ¼ pjψ i

−ihψ i
−j þ ð1 − pÞjψ iþihψ iþj,

where jψ i
�i¼ðjHi∓ijViÞ= ffiffiffi

2
p

. The initial state is therefore

FIG. 1. (a) Experimental setup for the simulation of DQPTs using QWs. Pairs of single photons are generated via type-I spontaneous
parametric down-conversion using a nonlinear β-barium-borate (BBO) crystal. One photon serves as a trigger and the other signal
photon is prepared in an arbitrary linear polarization state using polarizing beam splitters (PBSs), half-wave plates (HWPs) and quarter-
wave plates (QWPs) with certain setting angles, and a nonpolarizing beam splitter (NPBS). Coin rotations and conditional translations
are realized by two HWPs and a beam displacer (BD), respectively. For nonunitary QWs, a sandwich-type HWP-PPBS-HWP setup is
inserted to introduce the partial measurement, where PPBS is an acronym for a partially polarizing beam splitter. Avalanche photodiodes
(APDs) detect the signal and heralding photons. (b) Phase diagram for QWs governed by Floquet operators U and Ũ, labeled by the
winding number ν as a function of coin parameters ðθ1; θ2Þ. Note that phase boundaries and winding numbers for unitary QW dynamics
governed by U and nonunitary dynamics governed by Ũ are the same. Dashed red lines represent boundaries between PT -symmetry-
unbroken and broken regimes for Ũ, with PT -symmetry-broken regimes lying in between the red lines near topological phase
boundaries, which are represented by solid black lines. The black star represents coin parameters of the initial Floquet operatorUi or Ũi;
other symbols indicate coin parameters of final Floquet operators in different cases.
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a pure state when p ¼ f0; 1g and a mixed state otherwise.
Importantly, jx ¼ 0i ⊗ jψ i

�i are eigenstates of Ui with the
coin parameters ðθi1 ¼ π=4; θi2 ¼ −π=2Þ. We then imple-
ment QWs governed by Uf with coin parameters ðθf1 ; θf2Þ.
To facilitate measurement and reduce experimental error,
for most of our experiments, we choose ðθf1 ; θf2Þ on blue
dash-dotted lines in Fig. 1(b), as the spatial spread of the
resulting QW dynamics is small.
As the time evolution in each k sector is governed byUf

k,
the Fourier component of Uf, we construct the Loschmidt
amplitude Gðk; tÞ from its Fourier component P̄ðp; x; tÞ
according to

Gðk; tÞ ≔ Tr½ρ0ðUf
kÞt� ¼

X
x

e−ikxP̄ðp; x; tÞ; ð2Þ

where P̄ðp;x; tÞ ¼ phψ i
−jψ−ðx; tÞiþ ð1−pÞhψ iþjψþðx; tÞi,

and jψ�ðx; tÞi ¼ P
ke

ikxðUf
kÞtjψ i

�i. Experimentally,
P̄ðp;x;tÞ is measured by performing interference-based
measurements at the tth step [41,42].
We then construct the rate function according to

gðtÞ ¼ −
P

k∈1BZ ln jGðk; tÞj2. Note that by construction,
gðtÞ is the rate function of a quench between many-body
Floquet topological phases of fermions, where the initial
state is a direct product of single-particle density matrices
ρ0 at different quasimomenta in the first Brillouin zone
(1BZ) and the corresponding many-body Loschmidt ampli-
tude GðtÞ is given by GðtÞ ¼ Q

k∈1BZGðk; tÞ.
From the measured Gðk; tÞ, we further calculate DTOPs

characterizing DQPTs, which are defined as [27]

νmðtÞ ¼ 1

2π

Z
kmþ1

km

∂ϕG
k ðtÞ
∂k dk; ð3Þ

where the Pancharatnam geometric phase ϕG
k ðtÞ ¼

ϕkðtÞ − ϕdyn
k ðtÞ. Here ϕkðtÞ is defined through Gðk; tÞ ¼

jGðk; tÞjeiϕkðtÞ, and ϕdyn
k ðtÞ is the dynamic phase (see

Supplemental Material [41]). km (m ¼ 1; 2;…) are fixed
points of the dynamics, where the corresponding density
matrices do not evolve in time and ϕG

k ðtÞ vanishes at all
times. νmðtÞ therefore characterizes the S1 → S1 mapping
from the momentum submanifold between km and kmþ1

to eiϕ
G
k ðtÞ.

Physically, DTOPs measure the geometric phase accu-
mulated by the time-evolved wave function and character-
ize different dynamic regimes separated by the DQPT [22].
Further, it can only change value at a topological DQPT
with Gðkc; tcÞ ¼ 0, where the geometric phase becomes
ill-defined. Here, kc lies between adjacent fixed points
and tc ¼ ð2n − 1Þt0 (n ∈ N), with the critical timescale
t0 ¼ π=ð2Ef

kc
Þ and �Ef

k is the quasienergy of Uf
k (see

Supplemental Material [41]). While topological DQPTs
only occur for quenches between distinct topological
phases, abrupt jumps in νmðtÞ can serve as signals for
the dynamic characterization of equilibrium topological
phases.
DQPT in unitary dynamics.—We first study DQPTs

for pure states in unitary dynamics. We initialize photons
in the coin state jψ i

−i at x ¼ 0. The photons are then subject
to unitary time evolutions governed by the Floquet
operator Uf with ðθf1 ¼ −π=2; θf2 ¼ 3π=8Þ, which simu-
lates a quench between Floquet topological phases with
νi ¼ 0 and νf ¼ −2. Here, the fixed points k1;2;3;4 ¼
f−π;−π=2; 0; π=2g and kc ¼ f�π=4;�3π=4g. Note Uf

k

has a discrete symmetryUf
k ¼ Uf

kþπ in addition to the time-

reversal symmetry. Under these symmetries, Ef
kc
are degen-

erate and there is only one critical timescale t0 ¼ 4. In
Fig. 2(a), we show the rate function, which becomes
nonanalytic at the first critical time tc ¼ t0. Whereas it
is difficult to directly identify nonanalyticities of gðtÞ in
discrete-time dynamics, the measured gðtÞ peaks at critical
times and DQPTs are unambiguously revealed by jumps

(a) (b)

FIG. 2. Rate function (upper) and νmðtÞ (lower) of seven-step
unitary QWs as functions of time steps. The initial state of the
walker-coin system is jx ¼ 0i ⊗ jψ i

−i. QWs are governed by Uf

with (a) ðθf1 ¼ −π=2; θf2 ¼ 3π=8Þ and (b) Uf with ðθf1 ¼ −π=2;
θf2 ¼ π=4Þ, respectively. Error bars are derived from simulations
where we consider all the systematic inaccuracies of the experi-
ment. Asymmetry in error bars is due to decoherence.

(a) (b)

FIG. 3. Rate function (upper) and νmðtÞ (lower) of a seven-step
unitary QW. The walker starts at x ¼ 0 and the QW is governed
by the final Floquet operator Uf with ðθf1 ¼ −π=2; θf2 ¼ 3π=8Þ.
The initial coin state is a mixed state with (a) p ¼ 0.9 and
(b) p ¼ 0.7, respectively. Error bars are derived from simu-
lations, where we consider all the systematic inaccuracies of the
experiment.
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in the quantized DTOP across tc. The critical times are
further confirmed by particularly large error bars in the
measured νmðtcÞ (see Supplemental Material [41]), where
small perturbations have significant impact on the DTOP.
Because of the symmetry of Uf

k , we have ν1;3ðtÞ ¼
−ν2;4ðtÞ, where ν4ðtÞ is integrated in the range ðπ=2; πÞ.
We then fix the initial coin state and change the final

Floquet operator to Uf with ðθf1 ¼ −π=2; θf2 ¼ π=4Þ. As
shown in Fig. 2(b), the critical timescale changes to t0 ¼ 2,
and the rate function becomes nonanalytic at odd multiples
of t0. The quantized DTOPs also feature abrupt jumps at
critical times. As locations of km and kc are the same as
those of the previous case, there is only one critical
timescale as well.
In the second case study, we initialize photons at x ¼ 0

and in a mixed coin state characterized by ρ0 with p ¼ 0.7
and p ¼ 0.9, respectively. The QW is governed by Uf

with ðθf1 ¼ −π=2; θf2 ¼ 3π=8Þ. Whereas the resulting QW
dynamics still simulates quenches between topological
phases with νi ¼ 0 and νf ¼ −2, coin states of time-
evolved states remain mixed. As shown in Fig. 3, while
the occurrence of DQPTs are still signaled by nonanaly-
ticities in the rate functions, DTOPs are typically not
quantized. This is because ϕG

k ðtÞ do not vanish at km at
all times, such that eiϕ

G
k no longer forms a closed S1

manifold between km and kmþ1. Consequently, νmðtÞ is no

longer the winding number characterizing such a map.
These results are consistent with previous theoretical
studies [28,29]. Note locations of km and kc are the same
as in the previous cases.
For comparison, we choose Uf with ðθf1 ¼ −π=16;

θf2 ¼ −3π=16Þ and study the case where the quench
dynamics is between phases with νi ¼ 0 and νf ¼ 0. As
shown in Fig. 4, the rate function is smooth in time and
νmðtÞ remains zero, indicating the absence of DQPTs.
Here km ¼ f0;�π=2; πg.
DQPT in nonunitary dynamics.—The ease of introduc-

ing loss in photonics further allows us to explore DQPTs
in nonunitary dynamics [40,43]. We enforce nonunitary
dynamics by performing a partial measurement Me ¼
1w ⊗

ffiffi
l

p j−ih−j in the basis fj�ig at each time step, with
1w ¼ P

xjxihxj, j�i ¼ ðjHi � jViÞ= ffiffiffi
2

p
and l as the loss

parameter, which is fixed at l ¼ 0.36 in our experiment.
The nonunitary QW is then governed by

Ũ ¼ γCðθ1=2ÞSCðθ2=2ÞMCðθ2=2ÞSCðθ1=2Þ; ð4Þ

where M ¼ 1w ⊗ ðjþihþj þ ffiffiffiffiffiffiffiffiffiffi
1 − l

p j−ih−jÞ and γ ¼
ð1 − lÞ−1=4.
Topological properties of Ũ are characterized by winding

numbers defined through the global Berry phase [44–46].
The resulting phase diagram is the same as that of U
(see Supplemental Material [41]). Crucially, Ũ also possess
parity-time (PT ) symmetry; therefore its quasienergy
spectra can be entirely real in the PT -symmetry-unbroken
regime [47–49], in contrast to the regime with sponta-
neously broken PT symmetry. The boundary between
regimes with unbroken and brokenPT symmetry is plotted
in Fig. 1(b) as red dashed lines, with PT -symmetry-broken
regimes surrounding topological phase boundaries. It can
be shown that DQPTs necessarily occur for quench
processes between distinct Floquet topological phases in
the PT -symmetry-unbroken regime [40,41].
Similar to the unitary case, we initialize photons in

the state jx ¼ 0i ⊗ jψ̃ i
−i, with the corresponding Ũi in the

(a) (b)

FIG. 4. (a) Rate function and (b) νmðtÞ of a seven-step unitary
QW. The QW is governed by the final Floquet operator Uf with
ðθf1 ¼ −π=16; θf2 ¼ −3π=16Þ, which has the same winding num-
ber as that of the initial state. Error bars are derived from
simulations, where we consider all the systematic inaccuracies
of the experiment.

(a) (b)

FIG. 5. (a) Rate function and ν̃mðtÞ of a seven-step nonunitary QW with a loss parameter l ¼ 0.36. The initial state of the walker-coin
system is j0i ⊗ jψ̃ i

−i. The QW is governed by the nonunitary Floquet operator Ũf with ðθf1 ¼ −π=3; θf2 ¼ π=5Þ. (b) Rate function of the
QW governed by Ũf with ½θf1 ¼ −π=2; θf2 ¼ ðπ − ξÞ=2�, where ξ ¼ arccosð1=αÞ and α ¼ ð1þ ffiffiffiffiffiffiffiffiffiffi

1 − l
p Þ=ð2 ffiffiffiffiffiffiffiffiffiffi

1 − l4
p Þ. The two critical

timescales are t0 ¼ f1.7183; 2.1482g, which give rise to nonanalyticities in the rate function as indicated by vertical dashed lines in (a).
Theoretically calculated fixed points are located at k1;2;3;4 ¼ f−1.0094π;−0.4470π;−0.0094π; 0.5530πg and the critical momenta
kc ¼ f−0.7888π;−0.1534π; 0.2112π; 0.8466πg. Experimental errors are due to photon-counting statistics.

PHYSICAL REVIEW LETTERS 122, 020501 (2019)

020501-4



PT -symmetry-unbroken regime with νi¼0 and jx ¼ 0i ⊗
jψ̃ i

−i as the ground state of Ũi. The walker is evolved
under the final nonunitary Floquet operator Ũf with
ðθf1¼−π=3;θf2¼π=5Þ, which is in the PT -symmetry-
unbroken regime with νf ¼ −2. The Loschmidt amplitude,
the rate function g̃ðtÞ, and the DTOP ν̃mðtÞ for nonunitary
dynamics can be constructed similar to the unitary case (see
Supplemental Material [41]). As illustrated in Fig. 5(a),
nonanalyticities in the rate function have two distinct
timescales, which correspond to two different DTOPs
[see Fig. 5(b)], both quantized and demonstrating abrupt
jumps at odd multiples of the corresponding critical
timescale.
The emergence of two critical timescales is due to the

breaking of time-reversal symmetry of the nonunitary
dynamics [40]. In this case, whereas fixed points still exist
when Ui and Uf are in the PT -symmetry-unbroken
regime and have different winding numbers, they are no
longer located at high-symmetry points (see Supplemental
Material [41]). As a consequence, ν1;3ðtÞ and ν2;4ðtÞ feature
jumps with distinct critical timescales, characterized by
critical momenta with different quasienergies.
Finally, we study the case when the final nonunitary

Floquet operator is in the PT -symmetry-broken regime.
The resulting rate function is shown in Fig. 5(b), where no
DQPTs can be identified. As fixed points are also absent in
the dynamics, DTOPs cannot be defined in this case [40].
Final remarks.—We have showcased photonic QWs

as a powerful platform for the simulation of DQPTs in
quench dynamics of many-body topological systems. A
key requirement for our simulation scheme is the coherence
between different Fourier components of the wave func-
tion, which, for a single-photon QW, is guaranteed by the
quantum superposition of wave function amplitudes at
different quasimomenta. Our experiment opens up the
avenue of investigating DQPTs and related dynamic
topological phenomena using QW dynamics, whose flex-
ible control paves the way for future studies in novel
contexts such as engineered nonunitary dynamics, with
decoherence, or in higher dimensions.
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