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Classical phase space flow is inviscid. Here we show that in quantum phase space Wigner’s probability
current J can be effectively viscous. This results in shear suppression in quantum phase space dynamics
which enforces Zurek’s limit for the minimum size scale of spotty structures that develop dynamically.
Quantum shear suppression is given by gradients of the quantum terms of J’s vorticity. Used as a new
measure of quantum dynamics applied to several evolving closed conservative 1D bound state systems,
we find that shear suppression explains the saturation at Zurek’s scale limit and additionally singles out
special quantum states.
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The differences between quantum and classical evolution
are best investigated in phase space [1]. It is known that
quantum evolution in phase space does not obey Liouville’s
theorem of volume conservation [2,3] and that there is
no velocity field in quantum phase space [3] (and therefore
no flow). It is less clear why there is no quantum chaos
[1,4–7].
Here we show that the effective viscosity of quantum

phase space dynamics entails a shear suppression mecha-
nism that fundamentally differentiates quantum from
classical dynamics. This observation explains, amongst
other things, the absence of quantum chaos.
We consider dynamics in 1D closed conservative sys-

tems with spatial coordinate x and momentum p. As initial
states we use displaced Gaussians W0ðx; p; x0; p0Þ ¼
ðπℏÞ−1 exp½−ðx − x0Þ2 − ðp − p0Þ2=ℏ2�, which are posi-
tive [8] and therefore “classical”; ℏ ¼ h=2π is Planck’s
constant. After sufficient time t under classical evolution,
such a nonsingular initial distribution typically forms thinly
stretched out threads, see Fig. 1(c). Generally, structures of
ρ become progressively finer as time progresses [9],
particularly chaotic systems develop very fine structures
quickly [9–12].
Wigner’s quantum phase space distribution Wðx; p; tÞ

[13,14] is the closest quantum analog [3,9,14–16] of the
classical phase space distribution ρ. Quantum evolution
creates negative regions (blue, delineated by dashed lines at
W ¼ 0, see Fig. 1) (in all figures atomic units ℏ ¼ 1 and
M ¼ 1 are used [17]). These negative regions represent the
existence of quantum coherences, see Refs. [3,9,16,21]
and [17].
Interference in phase space [22] is a property built into

quantum phase space functions, such as W, through the
Wigner-Moyal mappings [2,13] between Hilbert space
operators and their quantum phase space images [23,24].
This interference limits the fineness of spotty structures that
W can have to Zurek’s phase space area scale [9]

aZ ¼ h
P
h
L
¼ 2π

Kx

2π

Kp
ð1Þ

[see Figs. 1(b) and 1(d)]. Here length L and momentum P
are W’s spread in phase space and thus the area LP
(measured in units of action) to which it is confined.
The maximal wave numbers associated withW’s structures
in x and p are, respectively, Kx¼P=ℏ and Kp ¼ L=ℏ [9]
(see Ref. [26] for exceptions). Over time, states develop
spotty structures that saturate on the Zurek scale aZ [9].
Here we show that the adherence to Zurek’s scale limit in

the evolution is best understood in terms of the viscosity
[17] of the Wigner current J [3,13,27,28].
J is the quantum analog of the classical phase space

current j ¼ ρv, which transports the probability density
ρðx; p; tÞ according to Liouville’s continuity equation
∂tρ ¼ −∇ · j. Here v is the classical phase space velocity
v ¼ ½p=M;−∂xVðxÞ�,M the mass of the particle, and VðxÞ
the potential, and ∇ ¼ ð∂x; ∂pÞ the gradient operator.
Over time ρ gets sheared since v creates nonzero

gradients of its angular velocity across energy shells.
The classical Hamiltonian phase space flow is inviscid
as v is independent of ρ. Thus no terms suppress the effects
of the angular velocity gradients, and so, as time pro-
gresses, nonsingular probability distributions in phase
space get sheared into ever finer filaments [see Fig. 1(c)].
We define classical phase space shear as [17]

sðx; p;HÞ ¼ ∂∇̂H
ð−∇ × vÞ ¼ ∂∇̂H

ð∂pvx − ∂xvpÞ; ð2Þ

using the directional derivative across energy shells ∂∇̂H
,

formed from the normalized gradient ∇̂H ¼ ∇H=j∇Hj of
the Hamiltonian H ¼ ½p2=ð2MÞ� þ VðxÞ.
The sign convention with the negative curl in s in Eq. (2)

was chosen to yield a positive sign for clockwise orientated
fields since this is the prevailing direction of the classical
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velocity field v. This choice yields s > 0 for hard potentials
(potentials for which the magnitude of the force increases
with increasing amplitude), since they induce clockwise
shear, see Fig. 1(c). s ¼ 0 for harmonic oscillators and
free particles, and s < 0 for soft potentials (potentials for
which the magnitude of the force decreases with increasing
amplitude), since they induce anticlockwise shear, see
Fig. 1(a).
W0s evolution is governed by the quantum continuity

equation [3,13]

∂tW ¼ −∇ · J ¼ −∂xJx − ∂pJp. ð3Þ

Wigner’s current J does not factorize like j ¼ ρv [3]. It has
an integral representation [13,17,28]. If the potential VðxÞ
is smooth such that it can be expanded into a Taylor series,
the integral for J can be determined explicitly as [2,13,29]

Jðx; p; tÞ ¼ jþ JQ ¼ Wv þ
�

0

Jp − jp

�
ð4Þ

¼W

� p
M

−∂xV

�
þ
�

0

−
P∞

l¼1
ðiℏ=2Þ2l
ð2lþ1Þ!∂2l

p W∂2lþ1
x V

�
:

ð5Þ
J’s zeroth-order term in l is the classical term j ¼ Wv

(e.g., Jpjl¼0 ¼ −W∂xV). Terms of order l ≥ 1 are the
quantum correction terms JQ ¼ J − j. They are only

present for anharmonic potentials [28], which is why only
anharmonic potentials create coherences. Harmonic sys-
tems’ phase space dynamics is classical [3,17,28].
The reaction of quantum dynamics to classical shear s

has to reside in JQ. To extract it we form the vorticity δ
of JQ

δðx; p; t;HÞ ¼ −∇ × JQ ¼ ∂pJ
Q
x − ∂xJ

Q
p : ð6Þ

δ’s sign distribution shows a pronounced polarization
pattern, see for example Fig. 2(c): specifically, on the
positive main ridge of W [Fig. 2(b)] δ tends to be positive
on the inside (towards the origin) and negative on the
outside. Because of this, the outside is being slowed down
while the inside speeds up. This polarized distribution of δ
therefore counteracts the classical shear (sVU

> 0) and can
suppress it altogether.
The same applies to other positive regions ofW, whereas

for its negative regions the current J tends to be inverted
[27,30] just as δ’s polarization pattern.
Switching the governing potential from hard, VU, to soft,

VV (using the same state but different dynamics), reverses
the classical shear, see Fig. 1. Accordingly, a reversal of the
polarization pattern of Fig. 2(c) occurs in Fig. 2(d).
The distribution of δ’s polarization can be picked up with

the directional derivative ∂∇̂H
δðt;HÞ. This we multiply with

W, because negative regions ofW invert the current J [27],
and because we want to weight it with the local contribution
of the state. The resulting measure for weighted shear
polarization is πðx; p; t;HÞ ¼ WðtÞ∂∇̂H

δðt;HÞ. Its average
across phase space is W’s shear polarization

FIG. 2. Polarization of the vorticity δ and inversion of this
polarization. The comparison between (c) and (d) shows
polarization inversion. (a) sketch of hard potential VU ¼
ðx=2Þ4 together with probability distributions Pðx; tÞ ¼
jΨðx; tÞj2 (black curve) of state evolved in VU from initial
stateW0ðx; p; 2; 0Þ (grey curve).W for t ¼ 4.7 in (a) is shown in
(b). White contours of W [the origin ðx; pÞ ¼ ð0; 0Þ is labeled
by a white cross] are overlaid with colors [legend given in
sidebar (e)] representing values of tanh½50δðHUÞ�, (c), and
tanh½50δðHVÞ�, (d). For the Hamiltonians HV and HU the same
potentials as in Fig. 1 are used.

FIG. 1. Comparison between classical and quantum distribu-
tions in phase space. For short times quantum evolution resem-
bles classical evolution, compare (b) to (a). But for long times,
since quantum evolution creates less fine structures than classical
evolution [9,25], their outcomes differ very substantially, contrast
(d) with (c). A weakly excited initial state W0ðx; p; 1.5; 0Þ is
propagated in the soft potential VV ¼ 31x2=10 − x4=81 for time
t ¼ 50, under, (a), classical evolution and, (b), quantum evolu-
tion. Similarly, the state W0ðx; p; 2; 0Þ is propagated in the hard
potential VU ¼ ðx=2Þ4 for time t ¼ 25, under, (c), classical and,
(d), quantum evolution.
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Πðt;HÞ ¼ ⟪πðt;HÞ⟫ ¼
ZZ

∞

−∞
dxdp πðx; pÞ: ð7Þ

Initially jΠðtÞj rises on average and after a while levels
off and settles, see Fig. 3.
We emphasize that the leveling-off behavior of ΠðtÞ is in

marked contrast to the classical case: in simple bound state
systems, the states never saturate, instead, for long enough
times ⟪∂∇̂H

ð−∇ × jÞ⟫ ∝ t since ρðtÞ gets stretched out
linearly into ever finer threads, see Fig. 1(c) and Ref. [17].
Also the quantum evolution can shrink structures of W in
size, butW’s minimal structures are forced to saturate at the
Zurek scale by shear suppression.
When a state saturates, the gradients in the quantum

terms of J become so large that they strongly quantum
suppress the classical shear inherent in J. Where minimal
structures of W have formed, this quantum shear suppres-
sion prevents still finer structures from developing: J’s
effective viscosity enforces the saturation of states at the
Zurek scale.
When this happens, ΠðtÞ has settled, see Figs. 3, 4,

and 6.

To make explicit the connection between shear suppres-
sion ΠðtÞ and the saturation of systems at the Zurek scale
we define W’s spatial frequency contents Ω as

ΩðtÞ ¼
RR

dkxdkpjW
≈ ðkx; kp; tÞkxkpjRR

dkxdkpjW
≈ ðkx; kp; tÞj

< 2KXKP; ð8Þ

where W
≈ ðkx; kpÞ is the 2D Fourier transform of Wðx; pÞ.

Since a state cannot only consist of structures at the Zurek
scale, Eq. (8) obeys the inequalityΩ<Ωmax¼½ð8π2Þ=az�¼
2KXKP, compare Eq. (1) and Ref. [17].
Figure 4 demonstrates that for simple systems changes

of the shear polarization ΠðtÞ can go hand in hand with
those of the spatial frequency contents ΩðtÞ. This estab-
lishes that shear suppression constitutes the mechanism by
which quantum dynamics conforms with interference in
phase space.
Interestingly, both measures single out special states:

those states for which the values of Π and Ω deviate from
the typical saturated system states’ values. In the case of
weakly excited single well bound state systems the special
states happen to be partial-revival states [31,32], see Fig. 6.
Some details of Fig. 4 can be understood from the
observation that even partial-revival states feature more
symmetric interference patterns, which lowers their fre-
quency contents Ω, when compared with odd partial-
revival states.
We emphasize that Π and Ω can measure aspects of the

dynamics very differently from each other, see Ref. [17] for
an illustration.
The spectrum Π̃ðωÞ of ΠðtÞ is smoother than the

spectrum Ω̃ðωÞ of ΩðtÞ, see Fig. 5. Valuable information
is more easily accessible through Π than Ω since this
smoothness allows us to cut out frequency bands without
sensitive dependence on the cut location. Additionally,
Π provides information more readily than the typically
used wave function overlap PðtÞ ¼ jhΨ0jΨðtÞij2. This is
because PðtÞ depends sensitively on its initial state Ψ0, but
also because the spectrum of PðtÞ is noisier and does not

FIG. 3. Πðt;HÞ levels off over time as systems saturate. Π’s
time evolution for, (a), initial state W0ðx; p; 9; 0Þ, for the hard
potential VU ¼ x4=500, and, (b), W0ðx; p; 3; 0Þ, for the soft
potential VV ¼ 31x2=10 − x4=81. In accord with our sign-
convention for Eq. (2) Πðt;HUÞ drops over time whereas
Πðt;HVÞ rises, until the system saturates.

FIG. 4. Shear suppression ΠðtÞ and frequency contents ΩðtÞ
can evolve similarly. AGaussian stateW0ðx; p; 3; 0Þ is evolved in
a hard potential VU ¼ 31x2=10þ x4=81. While ΩðtÞ rises (here,
Ωmax ¼ 182.5), as W develops fine structure, ΠðtÞ drops, since
we consider a hard potential VU. Both curves ΠðtÞ and ΩðtÞ level
off at the time where W’s fine structures saturate at the Zurek
scale. Here the oscillations around the respective mean values for
saturated systems are due to the formation of special (partial
revival) states [31,32], for details, see Fig. 6 and Ref. [17].

FIG. 5. Fourier spectra Π̃ðωÞ and Ω̃ðωÞ of the time series ΠðtÞ
and ΩðtÞ in Fig. 4. Note that ΠðtÞ provides a smoother spectrum
thanΩðtÞ. Cutting out Π̃’s central band (Π̃0 within white corridor)
allows us to smooth ΠðtÞ; see Fig. 6.
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have a central peak that provides accessible information in
the manner that Π̃0 does, see Ref. [17].
Our approach can be applied to a wide range of systems

including Kerr systems [33], driven and dissipative systems
[34], higher-dimensional continuous systems [13], and
discrete spin systems [15,35].
To conclude, quantum dynamics in phase space can be

effectively viscous; we have traced this back to the behavior
of the quantum corrections in Wigner’s phase space current
J. Quantum suppression of classical shear generates shear
polarization patterns that characterize the difference
between quantum and classical phase space dynamics.
J’s viscosity limits the fineness of structures formed in
quantum phase space dynamics. The quantification of
shear polarization patterns using ΠðtÞ provides new insight
into the character of quantum phase space dynamics.
Additionally, studying the time series of Π we find that
it sensitively displays features of the dynamics, picks out
special quantum states, does not rely on arbitrarily chosen
reference states, can be frequency filtered, and provides
information on the dynamics in a robust way.
For the study of the dynamics of continuous quantum

systems we expect that the shear suppression polarization
ΠðtÞ will prove to be a valuable alternative to the wave
function overlap probability PðtÞ.
O. S. thanks Michael Berry for his encouragement to

pursue this research and Alan McCall and Martin
Hardcastle for their careful reading of the manuscript.
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