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We propose and study a conformal field theory (CFT) model with random position-dependent velocity
that, as we argue, naturally emerges as an effective description of heat transport in one-dimensional
quantum many-body systems with certain static random impurities. We present exact analytical results that
elucidate how purely ballistic heat waves in standard CFT can acquire normal and anomalous diffusive
contributions due to our impurities. Our results include impurity-averaged Green’s functions describing the
time evolution of the energy density and the heat current, and an explicit formula for the thermal
conductivity that, in addition to a universal Drude peak, has a nontrivial real regular contribution that
depends on details of the impurities.
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Introduction.—Heat transport has been modeled success-
fully by the diffusion equation since Fourier’s time. Still,
the mathematical derivation of diffusion from microscopic
models has remained an outstanding challenge [1]. Recent
efforts addressing this problem in one spatial dimension
(1D) have led to important progress [2], including deriva-
tions in [3,4] of diffusive effects within hydrodynamical
descriptions of integrable quantum many-body systems
[5–8]. Meanwhile, exact results from conformal field theory
(CFT), routinely used to effectively describe universal
properties of 1D quantum many-body systems, show that
standard CFT only supports purely ballistic transport, see,
e.g., [9–12]. This points to the importance of randomness
and impurities. Such a route was recently explored in [13]
with positive results for CFTextended by special impurities
that vary in time and space. This, however, does not shed
light on the questions if and how static impurities inCFT can
lead to diffusion.
In this Letter, we propose and study CFT with random

position-dependent velocity vðxÞ. Such a random CFT,
we argue, emerges naturally as an effective description of
1D quantum many-body systems with static random
impurities that vary on mesoscopic length scales and
are commensurate in the sense that they induce the same
spatial variations in all terms in the Hamiltonian. Defining
this velocity in terms of a Gaussian random function and
using recent generalizations of CFT to inhomogeneous
situations [12,14–17], we obtain exact analytical results
which elucidate how ballistic transport in standard CFT can
acquire normal and anomalous diffusive contributions due
to such impurities.
For example, consider a generalizedXXZ spin chain with

uniformly varying couplings Jxi ¼ Jyi ¼ Ji and Jzi ¼ JiΔ
between spins on adjacent sites i and iþ 1, with constantΔ.
As argued in [16,17], if Ji varies on length scales much
larger than the lattice spacing and if jΔj < 1 (gapless

regime), then a generalized Luttinger model with posi-
tion-dependent velocity vðxÞ provides an effective descrip-
tion of this system. Such a model is an example of
inhomogeneous CFTwith central charge c ¼ 1.We propose
to use inhomogeneous CFTwith random vðxÞ to effectively
describe, e.g., generalized XXZ spin chains with couplings
Ji modeling static random impurities that are commensurate
(constantΔ) and vary on mesoscopic scales, see Fig. 1. The
usual derivation in, e.g., [18] is straightforward to general-
ize: the length-scale condition translates to sufficiently fast
decay of Ji in Fourier space, meaning only forward and no
umklapp scattering is induced by our impurities, and, since
they are commensurate, the only effect is that the constant
velocity v in the CFT description is replaced by vðxÞ
obtained from the Ji:s in the continuum limit [19].
We study heat transport in our random CFTmodel in two

complementary ways that make use of established math-
ematical tools from wave propagation in random media
[20]. Approach A: By deriving and exactly solving effec-
tive equations for heat transport. Approach B: By comput-
ing the linear-response thermal conductivity as a function
of frequency and deriving an explicit formula for its real
regular part. Both approaches are nonperturbative, and
Approach A is beyond linear response.
Averaging over impurities, we find heat waves that

deform diffusively, and we obtain exact results for the
thermal diffusivity αth at long times and the zero-frequency

FIG. 1. Illustration of a velocity vðxÞ effectively describing a
lattice system with impurities varying on a mesoscopic scale aimp

much larger than the lattice spacing a. For the XXZ spin chain
described in the main text, x ¼ ia, and the color and size of the
dots indicate the magnitude of the couplings Ji.
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limit Lth of the real regular thermal conductivity. Our results
show that, in general, there are normal and anomalous
diffusive contributions to heat transport on top of a ballistic
one.We also verify the Einstein relation betweenαth andLth,
which establishes a link between Approaches A and B.
In real systems, heat transport is ballistic at very low

temperatures, but diffusion caused by randomness becomes
increasingly important as temperature increases. Our model
allows one to analytically study the interplay between both
kinds of transport. To our knowledge, it is a new quantum
model in condensed matter physics, which has similarities
with models in geophysics and electrical engineering [20].
Importantly, the diffusion mechanism realized in our model
seems to have been largely overlooked in the condensed
matter literature.
Random CFT.—By inhomogeneous CFT we mean a

quantum field theory with Hamiltonian

H ¼
Z

dx vðxÞ½TþðxÞ þ T−ðxÞ�; ð1Þ

where vðxÞ > 0 is a velocity that varies smoothly in space
and T�ðxÞ are operators satisfying commutation relations
well known from standard CFT [21]:

½T�ðxÞ;T�ðyÞ� ¼ ∓2iδ0ðx−yÞT�ðyÞ
� iδðx−yÞT�0ðyÞ� c

24π
iδ000ðx−yÞ ð2Þ

and ½T�ðxÞ; T∓ðyÞ� ¼ 0, with c > 0 the central charge. The
time evolution of observables O is determined by the
Heisenberg equation ∂tO ¼ i½H;O� (we set ℏ ¼ kB ¼ 1).
In a specific model, T�ðxÞ are represented by operators on
a particular Fock space; there are many examples of
interest, including the Luttinger model already mentioned,
see, e.g., [12]. The special case vðxÞ ¼ v corresponds to
standard CFT.
We define random CFT as inhomogeneous CFT with

random velocity

vðxÞ ¼ v=½1 − ξðxÞ� ð3Þ
with ξðxÞ a Gaussian random function [22] specified by
E½ξðxÞ� ¼ 0 and the covariance

Γðx − yÞ ¼ E½ξðxÞξðyÞ�; ð4Þ
where E½·� denotes the average over impurities. We assume
that ΓðxÞ is even, has nonnegative Fourier transform, and
has finite Γ0 ¼

R
dxΓðxÞ. The parameter Γ0 is nonnegative

and has the dimension of length. We find it convenient to
introduce another length parameter a0 > 0 to write
ΓðxÞ ¼ ðΓ0=a0Þfðjxj=a0Þ, with fðuÞ some suitable func-
tion of the dimensionless variable u ¼ jxj=a0. Four illus-
trative examples, (a)–(d), of such functions fðuÞ are given
in Table I. Note that standard CFT can be recovered by
setting Γ0 ¼ 0.

Equation (3) can be understood as follows. In an
inhomogeneous system, the time for an excitation to travel
a fixed distance dx is changed from dx=v to dx=vðxÞ, and
in our model, this time change is random. We model this
randomness by a Gaussian random function, and, as wewill
show, such random time changes lead to diffusion while
preserving exact solvability.
We recall the following well-known property of

Gaussian random functions:

E½e−iλ
R

x

y
dx̃ ξðx̃Þ� ¼ e−λ

2Λðx−yÞ=2 ð5Þ

for real λ with Λðx − yÞ ¼ R
x
y dx1

R
x
y dx2 Γðx1 − x2Þ. This

identity enables us to compute impurity averages in our
model exactly. Note that ΛðxÞ is even, ≥ 0, and ΛðxÞ ¼
Γ0a0Fðjxj=a0Þwith FðuÞ ¼

R
u
0 dv1

R
u
0 dv2fðjv1 − v2jÞ; the

latter function is given in Table I for Examples (a)–(d). As
will be seen, certain transport properties will depend on
details of the impurities, i.e., the specific form of the
covariance ΓðxÞ in (4), and this dependence is encoded by
the function FðuÞ − u. There are also universal results
independent of the latter function, which makes clear that
Example (a) is special in that it describes only the universal
transport properties.
We note that the model with fixed impurities can be

made mathematically precise using Minkowskian CFTon a
circle. As in [12], this model can be solved by straightening
out vðxÞ using conformal transformations and taking the
thermodynamic limit. However, we will mainly use simpler
arguments to derive our results in the present Letter.
Approach A: Heat waves in random media.—In standard

CFT, the energy density and heat current operators are
EðxÞ ¼ v½TþðxÞ þ T−ðxÞ� and J ðxÞ ¼ v2½TþðxÞ − T−ðxÞ�,
and their expectation values in an arbitrary state, Eðx; tÞ ¼
hEðx; tÞi and Jðx; tÞ ¼ hJ ðx; tÞi, satisfy ∂tEðx; tÞ þ
∂xJðx; tÞ ¼ 0 and ∂tJðx; tÞ þ v2∂xEðx; tÞ ¼ 0, see, e.g.,
[12]. It is straightforward to generalize this to inhomo-
geneous CFT [23]:

∂tEðx; tÞ þ ∂xJðx; tÞ ¼ 0; ð6aÞ

∂tJðx; tÞ þ vðxÞ∂x½vðxÞEðx; tÞ� ¼ 0: ð6bÞ

TABLE I. Examples (a)–(d) of functions fðuÞ for u ≥ 0
defining covariance functions as ΓðxÞ ¼ ðΓ0=a0Þfðjxj=a0Þ.
The functions FðuÞ and F0ðuÞ are discussed in the text. [δðuÞ
and θðuÞ denote the Dirac delta and the Heaviside function.]

fðuÞ FðuÞ F0ðuÞ
(a) δðuÞ u 1

(b) 1
2
e−u uþ e−u − 1 1 − e−u

(c) 1
2
δðuÞ þ 1

4
δð1 − uÞ uþ 1−u

2
θð1 − uÞ − 1

2
1 − 1

2
θð1 − uÞ

(d) u=ð1þ u2Þ2 u − arctanðuÞ 1 − 1=ð1þ u2Þ
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We are interested in the situation where energy is
injected into an equilibrium state at time t ¼ 0. This
corresponds to the initial conditions Eðx; 0Þ ¼ e0ðxÞ and
Jðx; 0Þ ¼ 0, where e0ðxÞ describes an initial energy dis-
tribution. This function e0ðxÞ is arbitrary and independent
of vðxÞ.
Inspired by [24,25], we use tools from wave propagation

in random media to compute eðx; tÞ ¼ E½Eðx; tÞ� and
jðx; tÞ ¼ E½Jðx; tÞ�. Note that translation invariance, which
is broken by the impurities, is recovered after averaging.
Our results can be written in terms of the impurity-averaged
Green’s functions

G�ðx; tÞ ¼ θð�xÞ e
−ðx∓vtÞ2=2ΛðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πΛðxÞp ð7Þ

as follows [23]:

eðx; tÞ ¼
Z

dy ½GEþðx − y; tÞ þGE
−ðx − y; tÞ�e0ðyÞ; ð8aÞ

jðx; tÞ ¼
Z

dy ½GJ
þðx − y; tÞ þGJ

− ðx − y; tÞ�e0ðyÞ; ð8bÞ

with

GE
�ðx; tÞ ¼

1

2

�
1 −

ðx ∓ vtÞΛ0ðxÞ
2ΛðxÞ

�
G�ðx; tÞ; ð9aÞ

GJ
�ðx; tÞ ¼ � v

2
G�ðx; tÞ: ð9bÞ

A few remarks are in order: (i) Since G�ðx; tÞ → δðxÞ
as t → 0þ, the initial conditions are satisfied. (ii) Since
G�ðx; tÞ → θð�xÞδðx ∓ vtÞ as Γ0 → 0, the standard CFT
results of [12,26] are recovered. (iii) Total energy is con-
served in (8a) [23].
The functions in (7) are Gaussian distributions with

variance ΛðxÞ. They provide an explicit description of how
heat spreads in our system: G�ðx; tÞ describe waves
moving to the right (þ) or left (−) with speed v.
However, different from standard CFT, these heat waves
are not purely ballistic: in general, as they move, their
widths increase gradually, which indicates diffusion.
To characterize this diffusive behavior we note that

G�ðx; tÞ solves the propagation-diffusion equation [27]

½v−1∂t � ∂x − γðxÞ∂2
t �G�ðx; tÞ ¼ 0 ð10Þ

for �x > 0 and t > 0, with γðxÞ ¼ �Λ0ðxÞ=2v2 ¼
ðΓ0=2v2ÞF0ðjxj=a0Þ > 0 becoming constant for large jxj.
Phenomena described by a partial differential equation of
the form in (10) are referred to as temporal diffusion in [27],
with γðxÞ a temporal diffusion coefficient [28]. This is

similar to the usual notion of diffusion, the difference being
that space and time have switched roles.
It is important to note that one can also interpret

the above as standard diffusion in a frame of reference
moving with a heat wave. To see this, change variables to
x̃ ¼ x ∓ vt, t̃ ¼ jxj=v, and define G̃�ðx̃; t̃Þ ¼ G�ðx; tÞ.
This is a natural choice: x̃ is the coordinate of the observer
moving with the wave, and t̃ is her time measured by the
position of the wave. Equation (10) then becomes

½∂ t̃ − αthðt̃Þ∂2
x̃�G̃�ðx̃; t̃Þ ¼ 0 ð11Þ

for t̃ > 0 and �x̃ > −vt, with the thermal diffusivity
αthðt̃Þ ¼ ðΓ0v=2ÞF0ðvt̃=a0Þ. In general, αthðt̃Þ is time de-
pendent, see Table I for F0ðuÞ in our examples. The
exception is Example (a), where it is equal to the constant

αth ¼
Γ0v
2

; ð12Þ

while it converges to this value for large vt̃=a0 in Examples
(b)–(d).
Equation (11) is a diffusion equation in a moving frame

(the underlying ballistic motion) with heat waves changing
according to a diffusion process given by αthðt̃Þ. Equivalently,
the variance of this process is ΛðxÞ, which in the new
coordinates equals 2

R
t̃
0 dt

0αthðt0Þ ¼ Γ0a0Fðvt̃=a0Þ and thus
goes asΓ0vt̃ plus a nonlinear correction term, seeTable I. This
indicates that there are both normal and anomalous diffusive
contributions [29] on top of a ballistic one. The normal
diffusion is determined by the leading term u of the function
FðuÞ and is in this sense universal. The anomalous diffusive
part is determined by the subleading term FðuÞ − u and is
thus nonuniversal.
Approach B: Linear-response theory.—We consider

the linear-response thermal conductivity κthðωÞ averaged
over impurities as a function of frequency ω [23,30].
In general, its real part can be partitioned as Re κthðωÞ ¼
DthπδðωÞ þ Re κregth ðωÞ, where Dth is the thermal Drude
weight and κregth ðωÞ is the regular part, see, e.g., [12,31].
A nonzeroDth corresponds to a ballistic contribution, while
a nonzero Re κregth ðωÞ for ω ¼ 0 (≠ 0) corresponds to a
normal (anomalous) diffusive contribution [29].
For random CFT, our result is as described above with

Dth ¼ πvc=3β and

Re κregth ðωÞ ¼ πc
6β

�
1þ

�
ωβ

2π

�
2
�

×
Z

dx e−ð1=2Þðω=vÞ2ΛðxÞ cos
�
ωx
v

�
ð13Þ

if Γ0 > 0 and zero otherwise [23]. The Drude weight is the
same as in standard CFT, see, e.g., [12]. This corresponds
to the well-known universality of ballistic heat transport in
CFT, which extends to our situation with impurities.
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In addition, we obtain a nontrivial diffusive contribution
described by Re κregth ðωÞ in (13), which is plotted for dif-
ferent ΛðxÞ in Fig. 2.
For ΛðxÞ ¼ Γ0jxj [our Example (a)] one can compute

the integral in (13) analytically to obtain Reκregth ðωÞ¼
ðπc=6βÞ½1þðωβ=2πÞ2�Γ0=½1þðωΓ0=2vÞ2�, which implies

Lth ¼ lim
ω→0

Re κregth ðωÞ ¼ πc
6β

Γ0: ð14Þ

This is actually true independent of details of the impurities
[23], and thus, in particular, also for Examples (b)–(d).
Since Lth characterizes normal diffusion, this confirms that
the normal diffusion in our model is universal. Moreover,
(12) and (14) imply Lth ¼ ðπc=3βvÞαth, which provides a
link between our two approaches. Since the volume specific
heat capacity can be shown to be cV ¼ πc=3βv in both
random and standard CFT, this verifies the Einstein relation
Lth ¼ cVαth for heat transport.
The behavior ofRe κregth ðωÞ forω ≠ 0 depends on impurity

details, see Fig. 2. In particular, while Re κregth ðωÞ becomes
constant for largeω in Examples (a), (c), and (d) in Table I, it
grows linearly in Example (b), and it can be seen to grow
sublinearly in the example fðuÞ ¼ e−

ffiffi
u

p
=4

ffiffiffi
u

p
. It would be

interesting to explore this dependence on details more
systematically.
Conclusions.—We proposed and studied an exactly

solvable CFT model with random position-dependent
velocity. Such a model, we argued, naturally emerges as
an effective description of 1D quantummany-body systems
with commensurate static random impurities varying on
mesoscopic length scales. We presented two exact results
for heat transport that prove, in complementary ways, that
such impurities can lead to diffusive contributions on top of

the well-known ballistic one of standard CFT. In particular,
we found a universal normal diffusive contribution and, in
general, nonuniversal anomalous diffusive contributions
that depend on details of the impurities.
Our impurities do not lead to umklapp or backward

scattering. This is different from more common impurity
models, but those are also generally more difficult to treat.
Our model shows that impurities leading to only forward
scattering can be included in CFT without spoiling the
exact solvability, and that they can lead to diffusion. It is
important to investigate if this captures universal features of
real systems. However, there are good reasons to be
optimistic: different scattering mechanisms often manifest
themselves in the same way on larger scales, e.g., heat
transport in different systems is modeled successfully by a
Boltzmann equation with the same approximate collision
term [32].
The diffusion mechanism in our model has a simple

interpretation as follows. For fixed impurity configuration,
consider a source at position x0 emitting a deltalike heat pulse
at time t0 and monitor its arrival time t1 at position�x1 > 0.
If vðxÞ and the positions x0 and x1 were known accurately on
microscopic scales, one could compute t ¼ t1 − t0 deter-
ministically. However, we are interested in situations where
x0 and x1 are macroscopic lengths, i.e., only known to
accuracies much larger than the average impurity distance.
The region between x0 and x1 thus has to be modeled as a
random medium, and the propagation time t is given by a
probability distribution G�ðx; tÞ with x ¼ x1 − x0. By gen-
eral probabilistic arguments, one expects that this distribu-
tion satisfies a partial differential equation as in (10) [27],
which our results confirm.
Previous works deriving diffusion from static impurities

in microscopic models using precise mathematical argu-
ments include [33–35] for classical systems and [36] for a
noninteracting quantum system. As far as we know, there
are no such previous rigorous results for interacting
quantum systems. We thus stress that our exact results
are for quantum systems that include interacting ones.
We finally note that models similar to the generalized

XXZ spin chain discussed in the introduction have received
a lot of attention in the context of many-body localization
[37]. It would be interesting to investigate if potential
signatures of many-body localization can be established in
random CFT, similarly as in [13].
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(a) (b)

(c) (d)

FIG. 2. Re κregth ðωÞ in (13) for Examples (a)–(d) in Table I. In all
plots, ω0 ¼ v=Γ0, Γ0=a0 ¼ 0.6 is fixed, and the parameter varied
is βω0 equal to 1.8 (blue solid line), 1.2 (red dotted), and 0.6
(yellow dashed).
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