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We investigate the nature of the phase transition between the period-three charge-density wave and the
disordered phase of a hard-boson model proposed in the context of cold-atom experiments. Building on a
density-matrix renormalization group algorithm that takes full advantage of the hard-boson constraints,
we study systems with up to 9000 sites and calculate the correlation length and the wave vector of the
incommensurate short-range correlations with unprecedented accuracy.We provide strong numerical evidence
that there is an intermediate floating phase far enough from the integrable Potts point, while in its vicinity,
our numerical data are consistent with a unique transition in the Huse-Fisher chiral universality class.
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The identification of the universality class of phase
transitions is one of the most important aspects of both
classical and quantum physics. In the presence of a broken
symmetry, simple symmetry arguments often allow one to
guess the universality class of a transition (Ising, three-state
Potts, etc.) depending on the degeneracy of the broken
symmetry state. There are, however, cases where this is not
sufficient. A prominent example is the commensurate-
incommensurate transition in the case of a commensurate
phase with three types of domains. As first proposed by
Huse and Fisher [1], if domain walls between different
phases have different properties, this introduces a chiral
perturbation (the sequence, say, AjBjC is not equivalent to
its mirror image AjCjB, where A, B, C refer to different
domains), and if this perturbation is relevant, the transition
can only be in the three-state Potts universality class at an
isolated point where the perturbation vanishes. Away from
that point, there are three possibilities: (i) there is still a
unique transition, but it belongs to a new universality class
called chiral; (ii) there is a critical incommensurate
intermediate phase called a floating phase; (iii) the tran-
sition is first order. The investigation of this problem has
been a hotly debated issue in the 1980s in the context
of solid-on-solid models of adsorbed layers [1–11], and
the chiral Potts model has been further studied since then
[12–18]. Experimental evidence of the chiral melting of Ge
(113) and Si(113) 3 × 1 phases has been reported in the
early 1990s [19].
The issue has been recently reopened by Fendley et al.

[20] in the context of a 1D quantum model of trapped alkali
atoms [21] also relevant for recent experiments on Rydberg
states [22,23] described by the Hamiltonian:

H ¼
X

j

½−wðd†j þ djÞ þ Unj þ Vnj−1njþ1�; ð1Þ

In this model, d†j and dj are creation and annihilation
operators of hard bosons defined by the constraints
njð1 − njÞ ¼ 0 (no double occupancy, as for hard-core
bosons) and njnjþ1 ¼ 0 (bosons cannot sit on neighboring
sites). As shown by Fendley et al. [20] and confirmed by
our systematic investigation of the whole parameter space
with density-matrix renormalization group (DMRG)
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FIG. 1. Phase diagram of the hard-boson model of Eq. (1), with
three main phases: two ordered ones with period two and three,
and a disordered one with incommensurate short-range correla-
tions (IC) above the disorder (blue) line and commensurate (C)
ones below. The transition out of the period-three phase is
expected to be in the three-state Potts universality along an
integrable line (dotted line), in the chiral Huse-Fisher universality
class close to it, and through an intermediate critical phase with
incommensurate correlations far from it (see main text). The
width of this phase is smaller than that of the red line. Thin black
lines indicate the three cuts used in Figs. 2(a)–2(i). There is a
second integrable line that goes through a tricritical Ising point
(open green circle) below which the transition out of the period-
two phase is first order (black line) and above which it is in the
Ising universality class (green line).
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simulations, the phase diagram of this model (see Fig. 1)
consists of three main phases: two ordered phases (period
two and period three, respectively), and a disordered phase.
There is a disorder line in the disordered phase across
which short-range correlations become incommensurate.
Correlations are commensurate close to the period-two
phase, and the transition out of this phase turns from Ising
to first-order through a tricritical Ising point. Close to the
period-three phase, the correlations are incommensurate,
and the melting of the period-three phase is an example of a
commensurate-incommensurate transition with a relevant
chiral perturbation. The model has an integrable line
(dotted line) along which the transition is in the three-state
Potts universality class, and the main open issue is the
nature of the melting away from it. In the limit U → −∞,
Bethe ansatz results have shown that there has to be an
intermediate floating phase, and the absence of indication
of an additional transition has led the authors of Ref. [20] to
suggest that, coming from that side, an intermediate phase
might be present up to the Potts point. More recently, this
conclusion has been challenged by Samajdar et al. [24],
who see no reason to discard the original scenario put
forward by Huse and Fisher [1] with a Potts point flanked
by chiral transitions, and who provided numerical evidence
of a dynamical exponent larger than 1 on the other side of
the Potts point, in agreement with a chiral phase. Note that
on the scale of Fig. 1, the intermediate phase (if any) is
narrower than the linewidth.
To investigate the competition between a chiral transition

and a floating phase, the most direct evidence relies on the
behavior of the wave vector and the correlation length close
to the transition. For the three-state Potts universality class,
the wave vector q is expected to approach 2π=3 with an
exponent β̄ ¼ 5=3, as first shown by Baxter and Pearce
[10,25], while the correlation length ξ is expected to
diverge with an exponent ν ¼ 5=6. In the ordered phase,
the correlation length is also expected to diverge with an
exponent ν0 ¼ 5=6. By contrast, if the transition is chiral, it
has been predicted by Huse and Fisher that β̄ ¼ ν, so that
jq − 2π=3j × ξ tends to a constant at the transition. Besides,
there is still a unique transition, and ν0 ¼ ν. The presence of
an intermediate floating phase can also be clearly identi-
fied: Coming from the disordered phase, the correlation
length diverges at a Kosterlitz-Thouless (KT) transition
[26] at a point where q is still incommensurate, and q
reaches 2π=3 at a subsequent Pokrosky-Talapov (PT)
transition [27], with an exponent β̄ ¼ 1=2. In addition,
the correlation lengths behave very differently: at the KT
transition, the correlation length diverges as ξ ∝ expðC=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gKT − g

p Þ, where C is a constant and g a coordinate along
the path in parameter space, while at the PT transition
coming from the ordered phase, it diverges with an
exponent ν0 ¼ 1=2. As we shall see, such an analysis
requires us to have access to system sizes that are beyond

the scope of standard DMRG algorithms [28–32] for
hard-core bosons, which can typically handle hundreds
but not thousands of sites.
In this Letter, building on the exact mapping of the

model of Eq. (1) onto a quantum dimer model on a ladder
[33], we develop a DMRG algorithm that takes the hard-
boson constraints explicitly into account and thus takes full
advantage of the fact that the Hilbert space only grows as
Fibonacci number [34]. This allows us to reach very large
system sizes (routinely 4800 sites, up to 9000 sites occa-
sionally) and to access the scaling properties of the wave
vector and of the correlation length, hence to investigate
the competition between a direct chiral transition and an
intermediate critical floating phase. All simulations have
been performed with open boundary conditions, and the
wave vector and the correlation lengths have been obtained
by fitting the density-density correlations with Ornstein-
Zernike [35] (see Supplemental Material [36] for details).
The gross features of the divergence of the correlation

length and of the approach of the wave vector to 2π=3 are
illustrated in Figs. (2j) and 2(k). While the correlation
length increases smoothly along the border, the wave vector
is larger than 2π=3 below a separatrix defined by q ¼ 2π=3
and smaller than 2π=3 above it, leading to turning points
close to the Potts point. Finite-size effects can thus be
expected to be larger for the wave vector than for the
correlation length, especially below the Potts point, where
the turning point is rather acute.
Let us now look in more details at the vicinity of the

transition line. We start by discussing three specific points
where three rather different behaviors are observed.
The Potts nature of the critical point along the integrable

line at U ¼ φ−5=2 − φ5=2 ≃ −3.0299, V ¼ φ5=2 ≃ 3.3302,
where φ ¼ ð ffiffiffi

5
p þ 1Þ=2 is the golden ratio, is well estab-

lished from the exact solution [20]. To benchmark our
method, we have studied a horizontal cut that goes through
this Potts point. The results shown in Fig. 2(d)–2(f) are
fully consistent with the theoretical predictions β̄ ¼ 5=3
and ν ¼ ν0 ¼ 5=6.
Next, we consider a vertical cut far from the Potts point

at U ¼ −15. The numerical results are summarized in
Figs. 2(a)–2(c). The most striking difference with the
previous cases is the behavior of the correlation length.
In the disordered phase, the inverse correlation length
vanishes with a vanishing slope, whereas in the ordered
phase, it vanishes with an exponent ν0 ≃ 0.5. This asym-
metry strongly suggests that we are not facing a unique
transition any more, but two transitions of different nature.
Fits of the correlation length assuming that the transition is
KT in the disordered phase and PT in the ordered one leads
to VKT ≃ 5.288 < VPT ≃ 5.291, confirming the presence
of two transitions with a narrow intermediate phase.
The width of this phase is very small, but interestingly
enough, it is compatible with the Bethe ansatz prediction in
the U → −∞ limit [39]. The behavior of the wave vector
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further confirms this conclusion: q reaches 2π=3 at the PT
transition and with an exponent β̄ ≃ 0.579, in reasonable
agreement with the PT prediction β̄ ¼ 1=2. Finally,
we have also calculated the central charge between VKT
and VPT, and it agrees with 3% with the Luttinger liquid
prediction c ¼ 1 for the intermediate floating phase [36].
Let us now concentrate on a cut slightly above the

Potts point defined by the equation U ¼ −2.7V þ 8. The
numerical results are summarized in Figs. 2(g)–2(i).
The correlation lengths measured in the disordered and
ordered phases behave essentially as when crossing the
Potts point. They are consistent with a single transition
point at which both diverge, and the exponents ν ≃ 0.832
and ν0 ≃ 0.815 are equal to a good accuracy. By contrast to
the Potts case, however, the wave vector approaches 2π=3
with an exponent β̄ < 1 [see the change of concavity
between Figs. 3(e) and 3(h)]. So the transition is clearly
not in the Potts universality class. At the same time, the
behavior of the correlation length in the disordered phase is
inconsistent with a KT transition: There is no sign of a
change of curvature in 1=ξ, and if we, nevertheless, try to fit
it with the KT scaling, we get a transition point inside the
ordered phase. The presence of an intermediate phase is
thus rather unlikely.

Taken together, these various pieces of information point
to the Huse-Fisher chiral universality class as the only
possibility. This is further confirmed by our numerical
results for jq − 2π=3j × ξ shown in Fig. 2(i). Within the
error bars, they are consistent with a finite, nonzero limit
at the transition, as predicted by Huse and Fisher [1].
This should be contrasted with the vanishing limit at the
Potts point [see Fig. 2(f)], and with the divergence at the
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FIG. 2. (a)–(i) Inverse correlation length 1=ξ, wave vector q of the incommensurate correlations, and product jq − 2π=3j × ξ for three
cuts shown in Fig. 1. (a)–(c) Vertical cut at U ¼ −15; (d)–(f) Horizontal cut through the Potts point V ≃ 3.3302; (g)–(h) Cut along the
U ¼ −2.7V þ 8 line just above the Potts critical point. Inside the period-three phase, the correlation length is fitted with a power law
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exponent ν (pink line), or with the KT form ξ ∝ expðC= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gKT − g
p Þ, where g is the coordinate along the cut (green lines). The approach of

the wave vector q to 2π=3 is fitted with a power law with critical exponent β̄, assuming the critical coupling determined from the
correlation length in the ordered phase (filled symbols show the points used for the fit, except for the green line with exponent β̄ ≃ 0.847
in panel (h), for which only the points closest to the transition have been used). (j),(k) Constant-q and ξ plots in the vicinity of the
boundary of the period-three phase.
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FIG. 3. (a) Critical exponents obtained by fitting the correlation
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the ordered phase with a power law and that of the disordered
phase with the KT prediction (blue diamonds).
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KT transition when there is an intermediate phase [see
Fig. 2(c)]. Note that a direct determination of the exponent
β̄ is tricky. If all points between Vc and, say, Vc − 0.01 are
included, a fit of q with a power law yields β̄ ≃ 0.62.
If, however, only the points very close to the transition
are included, the exponent takes the value β̄ ≃ 0.847,
in reasonable agreement with the prediction β̄ ¼ ν.
This crossover is probably due to the proximity of a PT
transition.
Now, let us look at the trends along the critical line. The

main results are presented in Fig. 3. Details are provided in
the Supplemental Material [36]. In Fig. 3(a), we show the
value of the exponents ν and ν0 along the transition line
obtained by candid fits of the correlation length in both the
disordered and the ordered phases with power laws. Of
course, the fit with a power law is meaningless if the
transition is KT, but this graph is very useful to demonstrate
that there are two very different parameter ranges: close to
the Potts point (say, U > −4.5 or V < 6), the two expo-
nents are very close to each other, while outside this range,
they take very different values: ν0 ≃ 0.5, consistent with a
PT transition, and ν > 1, inconsistent with a chiral tran-
sition [15]. In Fig. 3(b), we show the difference between the
critical values of the coupling constants deduced from
power law fits of both transitions (red symbols), and from
fits with KT on one side and a power law on the other side
(blue symbols), whenever a KT fit was conclusive. The
difference between the critical values deduced from power-
law fits is below our precision close to the Potts point as
long as ν ≃ ν0, consistent with a single transition. Outside
that range, one should in principle rather rely on a KT fit of
the correlation length in the disordered phase to determine
the width of the intermediate phase. However, these fits are
affected by finite-size effects because, by the time ξ gets
very large, it is underestimated on finite systems; hence
1=ξ is overestimated, pushing the KT transition deduced
from the fit beyond the actual KT transition. Still, far
enough from the Potts point, and on both sides, there is
clear evidence of a finite intermediate region already for
the sizes accessible to our simulations [blue points in
Fig. 3(b)]. The actual width is expected to lie between the
two estimates.
So, altogether, our results are consistent with a single

transition around the Potts point in the range U > −4.5 to
V < 6, and with an intermediate phase outside this range,
with a very small width below the transition, and an even
smaller width above it. If these results are correct, then we
expect the presence of two Lifshitz points, one on each
side, separating the chiral transition from the incommen-
surate critical phase [1]. Can we be more precise about the
location of these points? Unfortunately not. Although we
have studied very large systems, finite-size effects are still
present, and they prevent us from distinguishing between a
very narrow intermediate phase and a direct transition. In
fact, even if the results of Figs. 2(g)–2(i) are consistent with

a direct chiral transition, we cannot exclude a very narrow
incommensurate phase with a width below, say, 10−4. So
all we can say is that the Lifshitz points (if any) are located
between U ¼ −12 and the Potts point on one side,
and between the Potts point and V ¼ 15 on the other
side. To go beyond these statements one could try to reach
even larger sizes, or to study in more detail on the basis of
available sizes the crossovers taking place in the vicinity
of these putative Lifshitz points. This is left for future
investigation.
To conclude, let us briefly compare our findings with

previous literature on quantum and classical models. The
quantum model of Eq. (1) has been studied in Refs. [20]
and [24]. Our results confirm some conclusions of both
papers, but the overall picture is different from that of both
papers. The prediction of Ref. [20] based on Bethe ansatz
in the U → −∞ that there is a narrow intermediate phase
is confirmed by our results for U negative enough, and the
suggestion that there could be one above the Potts is now
backed by solid numerical evidence. However, the per-
sistence of an intermediate phase up to the Potts point is
not supported by our numerical results. The conclusion of
Ref. [24] that the transition is chiral on the right hand side
of the Potts point is supported by our results not too far
from the Potts points, but the suggestion that this is true up
to V ¼ þ∞ is not since we found clear evidence of an
intermediate critical phase. We think that the discrepancy
comes from the very large system sizes required to detect
this incommensurate phase. The simulations of Ref. [24]
with periodic boundary conditions have the advantage of
leading to an accurate estimate of the dynamical exponent
through a data collapse assuming that the transition is
chiral, but they are limited to sizes that prevent the
detection of the incommensurate phase given its very
small width.
Finally, Monte Carlo investigations of the classical chiral

Potts model on the square lattice have found evidence of an
intermediate floating phase and of a possible Lifshitz point
[4], but system sizes were too small to study the scaling
of the wave vector between the Potts and the Lifshitz point.
By contrast, simulations of an extension of Baxter hard-
hexagon model away from the integrable point have
revealed an exponent β̄ ≃ 0.97 and a product ξq that tends
to a constant (q being the distance to the ordering wave
vector), pointing to a qualitative difference with Potts
universality class [11], but they did not find evidence of
a floating phase. It seems that the identification of the three
relevant possibilities (Potts, chiral, and critical intermediate
phase) in a single model had not been achieved so far with
numerical simulations of classical models.
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has been supported by the Swiss National Science
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