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Anomalous Temperature Behavior of the Chiral Spin Helix in CrNb3;S¢ Thin Lamellae
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Using Lorentz transmission electron microscopy and small-angle electron scattering techniques, we
investigate the temperature-dependent evolution of a magnetic stripe pattern period in thin-film lamellae of
the prototype monoaxial chiral helimagnet CrNb;S¢. The sinusoidal stripe pattern appears due to formation
of a chiral helimagnetic order (CHM) in this material. We found that as the temperature increases, the CHM
period is initially independent of temperature and then starts to shrink above the temperature of about 90 K,
which is far below the magnetic phase transition temperature for the bulk material 7. (123 K). The stripe
order disappears at around 140 K, far above T'.. We argue that this cascade of transitions reflects a three-
stage hierarchical behavior of melting in two dimensions.
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Introduction.—Stripe pattern formation is found in a
wide variety of ordered systems with many degrees of
freedom. It has been of considerable interest and inten-
sively discussed in condensed matter physics, including the
areas of density waves [1-3], Wigner crystals [4], magnetic
domains [5], superconductors [6], and liquid crystals [7,8].

Temperature evolution of the stripe pattern is one of the
fundamental and intriguing issues in this research area.
Chiral helimagnets with the chiral helical order, being
stabilized by an antisymmetric exchange interaction [9,10],
exhibit robust and stable phase coherence on a macroscopic
length scale [11]. Because of this feature, purely sinusoidal
phase modulation is realized in this class of materials
[12,13]. The regularity of the magnetic order makes chiral
helimagnets a promising candidate system to carry out
accurate determination of the spatial period and wave
number of the stripe magnetic pattern.

In this Letter, we report experimental analyses of the
periodicity of a chiral helimagnetic order (CHM) in thin-
film lamellae of a monoaxial chiral helimagnet CrINb;S¢ in
a wide temperature range by using Lorentz transmission
electron microscopy and small-angle electron scattering
(SAES) techniques. From direct visualization of the spin
helix order, we found three stages in the temperature T
evolution of the CHM period. First, the CHM keeps its
period constant at low 7. As T increases, a shrinkage of the
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period occurs at around 90 K, followed by a linear
dependence of the wave number on 7, which is far below
the magnetic phase transition temperature for the bulk
crystal 7. of 123 K. In the end, the stripe order vanishes
above 140 K. The appearance of these two characteristic
temperatures is hardly explained through mean-field theory
of three dimensional (3D) phase transitions. Remarkably,
the observed temperature evolution of the CHM pitch is in
line with predictions of the theory of melting in two
dimensions [14]. Specifically, one may identify the exper-
imental results just described as a low temperature solid
phase, a floating solid phase at intermediate temperatures,
and an isotropic fluid phase at higher temperatures. This
process has not previously been considered for the chiral
helimagnetic system and we believe our results represent
the observation of two dimensional (2D) melting in a
magnetic system.

Experiment.—Single crystals of transition-metal dichal-
cogenide CrNbsSq were grown using a chemical-vapor
transport method, as described elsewhere [15]. CrNb;Sg
has a hexagonal crystalline structure belonging to the
space group P6322 and thus exhibits an antisymmetric
Dzyaloshinskii-Moriya exchange interaction [9,10] which
competes with a symmetric Heisenberg exchange inter-
action. As a consequence, the CHM appears with a
harmonic spatial modulation and a fixed sense of rotation
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FIG. 1. (a) Schematic of the chiral helimagnetic order (CHM)
with a period L. (b) Magnetization curves of the bulk CrNb;Sg
single crystal as a function of 7 with a small H applied
perpendicular to the helical axis. (¢c) Temperature dependence
of L expected from 3D mean-field theory.

of the magnetic moment about the principal (c) axis of
the crystal, corresponding to the helical axis, as depicted
in Fig. 1(a).

The magnetic-field dependence of the CHM period at a
constant temperature is well understood: the CHM trans-
forms into a nonlinear helicoidal spin order, frequently
called chiral spin soliton lattice (CSL), in the presence of
a magnetic field applied in a direction perpendicular to
the helical axis of the CHM [11,16]. The CSL changes its
period with increasing field strength during the CSL
formation, which allows the chiral spin system to present
many striking physical responses [12,13] such as discre-
tized multivalued magnetoresistance [17—19] and collective
resonant dynamics sensitive to excitation polarization [20].
In contrast, in this Letter, we focus on the temperature
dependence of the CHM period at small constant magnetic
field.

Before preparing thin platelet specimens for Lorentz
electron microscopy observations, a temperature depend-
ence of the magnetization of the original bulk CrNb;Sg
crystal was measured in order to examine the crystal
quality. Figure 1(b) shows the temperature-dependent
magnetization curves for the bulk crystal. The data were
taken at various magnetic fields in the configuration of H
applied perpendicular to the helical ¢ axis using a com-
mercial superconducting quantum interference device mag-
netometer. A sharp peak of the magnetization appears and
the peak position remains almost the same at small H.
However, it moves toward lower 7 with further increasing
H, as reported elsewhere [13,17]. This behavior corre-
sponds to the phase transition from the CHM (or CSL)
phase into a paramagnetic one, which is well described by
the 3D mean-field theory based on the chiral sine-Gordon
model [21,22]. This consistency supports the validity of the
3D mean-field picture for the bulk crystal.

Following a standard definition of the critical temper-
ature 7, as the temperature giving the peak of the
magnetization at small H, e.g., less than 100 Oe, T, is
determined to be 123 K for the bulk crystal used in this
study. This value is smaller than the maximum value of

132 K, obtained in the bulk crystals synthesized in the
laboratory. However, as seen in the following paragraphs,
the CHM period is 48 nm at the lowest T used for this
crystal. This value is consistent with that obtained in
previous studies [23,24], which guarantees that the present
specimen has the same quality as those studied in the
literature. Neutron scattering experiments [24] showed that
the CHM wave number remains unchanged at 13 and
100 K for the bulk crystal.

Thin (<100 nm) platelet specimens for transmission
electron microscopy (TEM) analyses were prepared from
the bulk crystal using focused ion beam methods. TEM
observations were performed in a nearly-H-free environ-
ment (with a residual H ~ 100 Oe) by operating the
electron microscope without the electromagnetic objective
lens being excited.

Real-space observations of magnetic structures were
performed by means of the Fresnel mode of Lorentz
microscopy [25] using model JEM-2010 or JEM-2100
transmission electron microscope with an acceleration volt-
age of 200 kV. The differential phase contrast (DPC) mode
[26] was also adopted for precise evaluation of the stripe
pattern period using a JEOL ARM-200CF scanning trans-
mission electron microscope. In addition, SAES experiments
[25] were performed to accurately determine the value of the
wave number in reciprocal space. To examine the behavior
in a temperature range above 100 K, TEM samples were
cooled using a liquid N, holder. For performing Lorentz
microscopy at lower temperatures for many hours, the
samples were cooled down to below 2 K using superfluid
He in the seventh generation cryogenic transmission electron
microscope available in Nagoya University, Japan [27]. In
this case, the specimen temperature was around 4 K, which is
lower than temperatures achieved using a standard liquid
He holder. The temperature dependence of the CHM period
was measured with decreasing 7 below 100 K, while it was
examined with cycling 7" above 100 K.

A series of Fresnel-mode Lorentz images and SAES data
were taken at various temperatures as shown in Fig. 2. A
stripe pattern was obtained in the real-space images and its
intensity profile appears to be modulated in a harmonic
manner, as highlighted in Figs. 2(a)-2(c). The harmonic
nature of the magnetic modulation was directly demon-
strated in the SAES data, as presented in Figs. 2(f)-2(j).
A pair of spots was clearly observed only at a wave number
of the first harmonic position at 110 K, as reported
elsewhere [11]. These CHM spots remain present without
any accompanying higher harmonics at 130 K, which is
above the value of T'.. for the original bulk crystal. However,
no spots were observed at 140 K. One of the important
findings is that the harmonic magnetic structure appears in
a wide range of temperatures from 4 to 137 K, indicating
that the CHM survives even above T, for the bulk crystal.

Figure 3 shows how the CHM period L and wave
number Q vary with 7. Precise measurements of L and
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FIG. 2. Stripe pattern in a thin lamella of CrNb;S4 crystal at
various temperatures. Lorentz Fresnel images and SAES data
are given in (a)—(e) and (f)—(j), respectively. The insets in
(a)—(c) present harmonic intensity profiles of the CHM. A pair
of fundamental satellite peaks is indicated by arrows in (f)-(i).
Intensity line trace along dotted arrows in the ¢* direction is
shown below (i), indicating the presence of spots associated with
the magnetic stripe pattern at 137 K.

Q were performed in the real and reciprocal space by means
of Lorentz Fresnel and DPC methods and SAES method,
respectively. The temperature dependences of L and Q
are consistent with each other and thus the relationship of
Q =2x/L holds as expected. It is clear that the CHM
keeps its period constant up to about 90 K, at around which
temperature it starts to decrease with further increasing T';
e.g., a small drop of the period is found at 100 K. Then,
the stripe contrast suddenly disappears above 137 K.
Interestingly, the CHM period and wave number show a
linear dependence on 7 above 110 K and grows until
the temperature reaches 137 K, as clearly seen in Figs. 3(a)
and 3(b), respectively. The linear dependence can be found
in both cases since the amount of changes are smaller to the
values of L and Q at the lowest temperature. Importantly,
the observed behavior is inconsistent with that expected for
the 3D mean-field theory drawn in Fig. 1(c) and the inset
of Fig. 3(a). Moreover, Lorentz microscopy observations
reveal three 7 regions (regions I, II, and III) based on the
temperature dependence of the CHM period and wave
number, as indicated in Fig. 3.

Theoretical support.—The temperature dependence of
the magnetization shown in Fig. 1(b) indicates that the 3D
mean-field picture works well in the bulk sample [21,22].
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FIG. 3. The CHM period (a) and wave number (b) as a function
of T in a thin lamella of CrNb;Sq crystal. Blue squares represent
the data obtained by the Lorentz Fresnel and DPC methods.
Green circle and red triangles correspond to the SAES data taken
with increasing and decreasing T, respectively. The inset in
(a) shows the curve derived from the 3D mean-field theory
together with the experimental data and 7, for the bulk crystal.
Three regions which show different kinds of 7 dependence are
clearly seen. Regions I, II, and III correspond to the solid phase
(the CHM with the constant period), the floating solid phase (the
shrinkage of the CHM period), and the isotropic fluid phase (the
paramagnetic regime), respectively.

First, we demonstrate the temperature dependence of
the CHM and CSL periods based on this picture. The
CSL period is given by a formula L = 8K (x)E(k)/(7zqq)
[12,16], where K(x) and E(x), respectively, denote the
elliptic integrals of the first and second kinds with
the elliptic modulus «(0 <k <1). The modulus x is
determined by minimizing the CSL formation energy
and determined through the relation «/E(k) =
VH/H.\/m(H,T)/m(H,0), where H.. is the critical field
at the zero temperature and m(H,T) is the field- and
temperature-dependent amplitude of the magnetic moment
which is determined by minimizing the mean-field free
energy density [21], f = (T/T.—1)m*+ bm* —mH,
where b is a temperature-independent positive constant.
Then, at the constant field, the temperature-dependent
modulus «x gives the temperature dependence of L, which
is presented in Fig. 1(c). In the 3D mean-field picture, L
hardly increases upon increasing 7" below T'. and starts to
rapidly increase far above T'.. A similar divergent behavior
of L is also reported in the recent study [28].

In the experimental findings mentioned above, the linear
temperature dependence of the wave number in the temper-
ature region II seems to be a challenging issue, since this
result goes against the 3D mean-field theory as evident
from Fig. 1(c). We will argue that this feature might be
explained within the theory of 2D melting [14].

Prior to substantiating this claim based on the 2D model,
we first note that Lorentz microscopy and SAES experi-
ments [11,25] enable us to monitor the spatial distribution
of the magnetic moment associated with the CHM, M (r) =
Mle, cos ¢(r) = é,sing(r)], where the xy plane corre-
sponds to the crystallographic ab plane and the helical z
axis coincides with the crystallographic ¢ axis. The sign
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defines the chirality of the helix. The amplitude of the order
parameter M, is the value of the magnetic moment and
the phase ¢(r) describes the spatial modulation of the
CHM structure. In real-space images, the CHM is visual-
ized as a modulated stripe pattern of an in-plane component
of the magnetic moment. As complementary information
provided by SAES, the harmonically modulated CHM is
detected as a pair of fundamental satellite peaks in the
reciprocal k space.

To describe the temperature evolution of the stripe pattern,
we begin with the 2D classical phase Hamiltonian of the
Pokrovsky-Talapov model [29,30], which has been dis-
cussed in the context of CHM [31,32],

H= /dxdz(%(é’z(p—é)2 +§(8x(p)2 +/1c05(p>, (1)

where the spin stiffness parameters, ¢ and v (0 K V),
originate from the anisotropic ferromagnetic exchange inter-
actions within the xz plane, the misfit parameter § stems from
the antisymmetric exchange interaction, and the pinning
potential A comes from the Zeeman coupling with the small
external magnetic field applied perpendicular to the helical
axis.

Depending on temperature ranges, the starting
Hamiltonian (1) is mapped onto different effective models.
In the low temperature regime (regime I), the fermionic
representation is valid, as demonstrated by Schulz [33].
In the intermediate and high temperature regimes (regimes
IT and III, respectively), the renormalization-group (RG)
scheme works well [34,35]. The whole sequence of the
analysis is consistent with a universal hierarchy of 2D
melting phenomena proposed by Nelson and Halperin [14].

In this general scheme, a regular solid state undergoes a
transition into a floating solid phase with an orientational
order followed by an isotropic fluid phase upon increasing
temperature [14]. In our experiment on chiral helimagnets,
the solid phase corresponds to the CHM one with a constant
period, the floating solid phase is indicated by the shrink-
age of the CHM period, and the isotropic fluid phase arises
as the paramagnetic phase.

To specity the correspondence, we discuss the theoretical
scheme in more detail. The fermionic model by Schulz is
introduced by applying the transfer integral technique to
the Hamiltonian (1) which maps it first onto the (1 + 1)
quantum bosonic Hamiltonian, where the space coordinate
lies along the z axis. This bosonic Hamiltonian is then
transformed into the fermionic Tomonaga-Luttinger model
with the umklapp scattering term originating from the
Zeeman coupling term A cos ¢. The misfit parameter o plays
a role of the chemical potential of the fermion system.

In the fermion model framework, the umklapp processes
cause the Mott insulating phase with a gap between the
lower Hubbard band (LLHB) and the upper one (UHB) [33].
As a consequence, the phase coherence of the pattern is
protected by the Mott gap, where the chemical potential lies

inside the gap. An appearance of additional kinks corre-
sponds to thermally excited fermions in the UHB, which
is interpreted as a starting of the melting. As has been
demonstrated by Schulz, the orientational phase order just
above the melting point is supported by the strongly
anisotropic nature of spatial correlations.

The intermediate temperature regime may be treated by
the RG theory of the floating devil’s staircase in two
dimensions [35]. According to this approach, the initial
Hamiltonian (1) may be considered as a grand-canonical
ensemble with a chemical potential y coupled with the kink
density p. A key insight of the formalism is that the phase
fluctuations undergo the RG transformations after the
periodic background is subtracted. It was demonstrated
that the RG flows belong to the Kosteritz-Thouless (KT)
universality class, but, in contrast to the original KT theory,
they rapidly terminate in our system due to the presence of
sharp cutoff functions which reflect the existence of the
natural length scale related with a distance between kinks
[35]. Just above the melting transition, the RG trajectories
flow towards the regime where the Mott gap collapses with
the chemical potential u being fixed. Therefore, possible
excitations may be regarded as a proliferation of the
fermions into the UHB. In other words, as T increases,
new kinks enter into the system following a linear depend-
ence of the kink density on temperature p o uT + f(p),
where f(u) is a function of only the chemical potential [35].
This linearly temperature-dependent kink density is con-
sistent with the experimentally observed linear dependence
of the wave number above 110 K.

At the final stage, the stripe order disappears and is
followed by a high-temperature paramagnetic phase. As
discussed previously by some of the authors, the initial
Hamiltonian (1) may be reformulated in terms of the
massive Thirring model, where it was argued that the
misfit parameter rules out a KT transition, because it acts as
an effective in-plane electric field that prevents a formation
of bound vortex-antivortex pairs [34].

Concluding remark.—In this Letter, we examined the
temperature-dependent evolution of a magnetic stripe
pattern associated with the harmonic CHM in thin lamellae
of CrNbsS¢ using Lorentz electron microscopy and SAES
techniques. A notable feature found in these measurements
is the shrinkage of the CHM period above T ~ 90 K, far
below the magnetic phase transition temperature for the
bulk material. We argued that this temperature dependence
reflects the universal behavior intrinsic to 2D melting [14].
This observation might be regarded as manifestation of
Halperin-Nelson hierarchy of the melting process in a
magnetic system. We believe that the present work will gain
insight on the hierarchy of 2D melting and shed light on the
physics of patterns in a magnetic system.

The DPC data are available in Ref. [36].
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